PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the Microstructure, Properties and Machinability of Al-Cu-Si Alloys

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As part of the studies conducted in the field of broadly understood casting of non-ferrous metals, selected results on the impact of variable additions of copper and silicon in aluminium were presented. A series of melts was carried out with copper content kept constant at a level of 2% (1st stage) and 4% (2nd stage) and variable contents of silicon introduced into aluminium. The crystallization characteristics of the examined alloys and the percentage of structural constituents at ambient temperature were obtained by modelling the thermodynamic parameters of individual phases with the CALPHAD method. The microstructure of the obtained alloys was examined and microhardness was measured by the Vickers-Hanemann method. The alloy properties were assessed based on the results of mechanical tests, including ultimate tensile strength (UTS), hardness (BHN) and elongation (E). The machinability of the tested alloys was analyzed in a machinability test carried out by the Keep-Bauer method, which consisted in drilling with a constant feed force. The obtained results clearly indicate changes in the images of microstructure, such as the reduction in grain size, solution hardening and precipitation hardening. The changes in the microstructure are also reflected in the results of mechanical properties testing, causing an increase in strength and hardness, and plasticity variations in the range of 4 ÷ 16%, mainly due to the introduced additions of copper and silicon. The process of alloy strengthening is also visible in the results of machinability tests. The plotted curves showing the depth of the hole as a function of time and the images of chips produced during the test indicate an improvement in the wear resistance obtained for the tested group of aluminium alloys with the additions of copper and silicon.
Rocznik
Strony
145--153
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Kraków, Poland
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Kraków, Poland
Bibliografia
  • [1] Goehler, D.D. (1988). Proc. of Innovations and Advancements in Aluminum Casting Technology -AFS Special Conf., City of Industry, CA (pp. 103-06). American Foundrymen’s Society, Des Plaines, Illinois, USA.
  • [2] Wang, Q.G. (2003). Microstructural effects on the tensile and fracture behavior of aluminum casting alloys A356/357. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 34, 2887-2899. DOI: 10.1007/s11661-003-0189-7.
  • [3] Farahany, S., Ourdjini, A., Idris, M.H. & Shabestari, S.G., (2013). Computer-aided cooling curve thermal analysis of near eutectic Al-Si-Cu-Fe alloy: Effect of silicon modifier/refiner and solidification conditions on the nucleation and growth of dendrites. Journal of Thermal Analysis and Calorimetry. 114, 705–717. DOI: 10.1007/s10973-013-3005-7.
  • [4] Ghanbari, E., Saatchi, A., Lei, X., & Macdonald, D.D. (2019). Studies on Pitting Corrosion of Al-Cu-Li Alloys Part II: Breakdown Potential and Pit Initiation. Materials. 12(11), 1786. DOI: 10.3390/ma12111786.
  • [5] Ghanbari, E., Saatchi, A., Lei, X., & Macdonald, D.D. (2019). Studies on Pitting Corrosion of Al-Cu-Li Alloys Part III: Passivation Kinetics of AA2098-T851 Based on the Point Defect Model. Materials. 12(12), 1912. DOI: 10.3390/ma12121912.
  • [6] Rzadkosz, S., Zych, J., Piękoś, M., Kozana, J., Garbacz-Klempka, A., Kolczyk, J. & Jamrozowicz, Ł. (2015). Influence of refining treatments on the properties of Al-Si alloys. Metalurgija. 54(1), 35-38. http://hrcak.srce.hr/file/187164.
  • [7] Kozana, J., Piękoś, M., & Garbacz-Klempka, A. (2018) Issues concerning the structure and properties of AlSi7Mg alloys and die castings for the automotive industry. In F. Romankiewicz, R. Romankiewicz, R. Ulewicz (Eds.) Advanced Manufacturing and Repair Technologies in Vehicle Industry. (pp.163-191). Zielona Góra (in Polish).
  • [8] Piękoś, M. & Zych, J. (2019). Investigations of the influence of the zone of chills on the casting made of AlSi7Mg alloy with various wall thicknesses. Archives of Foundry Engineering.19(1), 127-132. DOI: 10.24425/afe.2019.127106.
  • [9] Pysz, S., Maj, M. & Czekaj, E. (2014). High-Strength Aluminium Alloys and Their Use in Foundry Industry of Nickel Superalloys. Archives of Foundry Engineering. 14(3). 71-76.
  • [10] Tupaj, M., Orłowicz, A.W., Mróz, M. Trytek, A. & Markowska, O. (2016). Usable Properties of AlSi7Mg Alloy after Sodium or Strontium Modification. Archives of Foundry Engineering. 16(3), 129-132. DOI: 10.1515/afe-2016-0064.
  • [11] Tupaj, M., Orłowicz, A.W., Trytek, A. & Mróz M. (2019). Improvement of Al-Si Alloy Fatigue Strength by Means of Refining and Modification. Archives of Foundry Engineering. 19(4), 61-66. DOI: 10.24425/afe.2019.129631.
  • [12] Romankiewicz, R. & Romankiewicz, F. (2017). Influence of time on modification effect of silumin AlSi11 with strontium and boron. Metallurgy and Foundry Engineering. 43(3), 209-217. DOI: 10.7494/mafe.2017.43.3.209.
  • [13] Romankiewicz, R. & Romankiewicz, F. (2018). Influence of modification on the refinement of primary silicon crystals in hypereutectic silumin AlSi21CuNi. Production Engineering Archives. 19, 30-36. DOI: 10.30657/pea.2018.19.07.
  • [14] Czekaj, E., Zych, J., Kwak, Z., Garbacz-Klempka, A. (2016) Quality Index of the AlSi7Mg0.3 Aluminium Casting Alloy Depending on the Heat Treatment Parameters. Archives of Foundry Engineering. 16(3), 25-28. DOI: 10.1515/afe-2016-0043.
  • [15] Hirsch, J. & Al-Samman, T. (2013). Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Materialia. 61(3), 818-843. DOI: ISSN 1359-6454.
  • [16] Hirsch, J. (2014). Recent development in aluminium for automotive applications. Transactions of Nonferrous Metals Society of China. 24(7), 1995-2002. DOI: 10.1016/S1003-6326(14)63305-7.
  • [17] Tisza, M. & Czinege, I. (2018). Comparative study of the application of steels and aluminium in lightweight production of automotive parts. International Journal of Lightweight Materials and Manufacture. 1(4), 229-238. DOI: 10.1016/j.ijlmm.2018.09.001
  • [18] Starke, E.A., Staley, J.T., (1996). Application of modern aluminum alloys to aircraft. Progress in Aerospace Sciences. 32(2), 131-172.
  • [19] Heinz, A., Haszler, A., Keidel, C., Moldenhauer, S., Benedictus, R. & Miller, W.S. (2000). Recent development in aluminium alloys for aerospace. Materials Science & Engineering A. 280(1), 102-107.
  • [20] Shenglong, Y.S.D. (2005). A glimpse at the development and application of aluminum alloys in aviation industry. Materials Review. 2, 022.
  • [21] Rioja, R. & Liu, J. (2012). The evolution of Al-Li base products for aerospace and space applications. Metallurgical and Materials Transactions A. 43, 3325–3337. DOI: 10.1007/s11661-012-1155-z.
  • [22]Dursun, T. & Soutis, C. (2014). Recent developments in advanced aircraft aluminium alloys. Materials & Design. 56, 862–871. DOI: 10.1016/j.matdes.2013.12.002.
  • [23] Rambabu, P., Eswara Prasad, N., Kutumbarao V.V. & Wanhill, R.J.H. (2017). Aluminium Alloys for Aerospace Applications. In N. Prasad, R. Wanhill (Eds.) Aerospace Materials and Material Technologies. (pp.29-52). Indian Institute of Metals Series. Springer, Singapur. DOI: 10.1007/978-981-10-2134-3_2.
  • [24] Zych, J., Piekło, J., Maj, M., Garbacz-Klempka, A. & Piękoś, M. (2019). Influence of structural discontinuities on fatigue life of 4XXX0-series aluminum alloys. Archives of Metallurgy and Materials. 64(2), 765-771. DOI: 10.24425/amm.2019.127611.
  • [25] Gloria, A., Montanari, R., Richetta, M. & Varone, A. (2019). Alloys for Aeronautic Applications: State of the Art and Perspectives. Metals. 9, 662. DOI: 10.3390/met9060662.
  • [26] Mori, H., Minoda, T., Omura, N., Betsuki, Y., Kojima, Y., Watanabe, Y. & Tanaka, H. (2019). Development of high-strength and high-toughness aluminum alloy. Journal of Japan Institute of Light Metals. 69, 9-14. DOI: 10.2464/jilm.69.9.
  • [27] Górny, M. & Sikora, G. (2015). Effect of titanium addition and cooling rate on primary α(Al) grains and tensile properties of Al-Cu alloy. Journal of Materials Engineering and Performance. 24(3), 1150-1156. DOI: 10.1007/s11665-014-1380-2.
  • [28] Stąpór, S., Górny, M., Kawalec, M. & Gracz, B. (2020) Effect of variable manganese content on microstructure of Al−Cu alloys. Archives of Metallurgy and Materials. 65(4), 1377-1383. DOI: 10.24425/amm.2020.133703.
  • [29] Pan, X.M., Lin, C., Brody, H.D. & Morral J.E. (2005). An assessment of thermodynamic data for the liquid phase in the Al-rich corner of the Al-Cu-Si system and its application to the solidification of a 319 alloy. Journal of Phase Equilibria and Diffusion. 26, 225-233. DOI: 10.1007/s11669-005-0109-1.
  • [30] Ponweiser, N. & Richter, K.W. (2012). New investigation of phase equilibria in the system Al-Cu-Si. Journal of Alloys and Compounds. 512, 252-263. DOI: 10.1016/j.jallcom.2011.09.076.
  • [31] Awe, S.A. (2020). Solidification and microstructural formation of a ternary eutectic Al-Cu-Si cast alloy. Journal of King Saud University - Engineering Sciences. DOI: 10.1016/j.jksues.2020.07.004.
  • [32] Joshi, A., Yogesha, K.K., Kumar, N. & Jayaganthan, R. (2016). Influence of Annealing on Microstructural Evolution, Precipitation Sequence, and Fracture Toughness of Cryorolled Al-Cu-Si Alloy. Metallogr. Microstruct. Anal. 5, 540–556. DOI: 10.1007/s13632-016-0313-x
  • [33] Zhao, G., Ding, C. & Gu, M. (2019). Effects of cooling rate and initial composition on the solidification path and microstructure of Al-Cu-Si alloys. International Journal of Cast Metals Research. 32(1), 36-45. DOI: 10.1080/13640461.2018.1507160.
  • [34] Caceres, C.H., Djurdjevic, M.B., Stockwell, T.J. & Sokolowski, J.H. (1999). The Effect of Cu Content on the Level of Microporosity in Al-Si-Cu-Mg Casting Alloys. Scripta Materialia. 40, 631-637.
  • [35] Djurdjevič, M.B. & Grzinčič, M.A. (2012). The Effect of Major Alloying Elements on the Size of Secondary Dendrite Arm Spacing in the As-Cast Al-Si-Cu Alloys. Archives of Foundry Engineering. 12(1), 19-24. DOI: 10.2478/v10266-012-0004-2
  • [36] Vasconcelos, A.J., Kikuchi, R.H., Barros, A.S., Costa, T.A., Dias, M., Moreira, A.L., Silva, A.P. & da Rocha, O.L. (2016). Interconnection between microstructure and microhardness of directionally solidified binary Al-6wt.%Cu and multicomponent Al-6wt.%Cu-8wt.%Si alloys. Anais da Academia Brasileira de Ciencias. 88(2), 1099-1111. DOI: 10.1590/0001-3765201620150172.
  • [37] Costa, T.A., Moreira, A.L., Moutinho, D.J., Dias, M. Ferreira, I.L., Spinelli, J.E., Rocha, O.L. & Garcia, A. (2015). Growth direction and Si alloying affecting directionally solidified structures of Al–Cu–Si alloys. Materials Science and Technology. 31(9), 1103-1112. DOI: 10.1179/1743284714Y.0000000678.
  • [38] Costa, T.A., Dias, M., Gomes, L.G. Rocha, O.L. & Garcia, A. (2016). Effect of solution time in T6 heat treatment on microstructure and hardness of a directionally solidified Al-Si-Cu alloy. Journal of Alloys and Compounds. 683, 485-494. DOI: 10.1016/j.jallcom.2016.05.099.
  • [39] Ferreira, I.L., Lins, J.F.C., Moutinho, D.J., Gomes, L.G. & Garcia, A. (2010). Numerical and experimental investigation of microporosity formation in a ternary Al-Cu-Si alloy. Journal of Alloys and Compounds. 503(1), 31-39. DOI: 10.1016/j.jallcom.2010.04.244.
  • [40] Wróbel, M. & Burbelko, A. (2015). CALPHAD method - a modern technique for obtaining thermodynamic data (Metoda CALPHAD – nowoczesna technika pozyskiwania danych termodynamicznych). Archives of Foundry Engineering. 14 (si. 3), 79-84 (in Polish).
  • [41] Wang, C., Huang, F., Lu, Y., Yang, S., Yang, M. & Liu, X. (2013). Experimental Investigation and Thermodynamic Calculation. Journal of Electronic Materials. 42(10), 2961-2974. DOI: 10.1007/s11664-013-2695-8.
  • [42] Andersson, J.O., Helander, T., Höglund, L., Shi, P. & Sundman, B. (2002). Thermo-Calc & DICTRA, computational tools for materials science. Calphad. 26(2), 273-312. DOI: 10.1016/S0364-5916(02)00037-8.
  • [43] Pezda, J. (2008). Effect of modification with strontium on machinability of AK9 silumin. Archives of Foundry Engineering. 8 (SI 1), 273-276.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bcc05ea2-7e5a-40f1-afca-77a83bab1495
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.