PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Innovative design of non-backlash worm gear drives

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper the authors present the newest designs of worm gear drives which allow to adjust or decrease the amount of backlash. This effect is achieved with innovative designs of worms and worm wheels. The designed drives are aimed to find their application in systems for precise positioning of measurement assemblies, precise drives of technological instrumentation, as well as in micro-mechanisms. Many of the presented designs allow backlash adjustment without removing of the worm gear drive. The described solutions present a good alternative to conventional high-gear precision drives as well as harmonic drives used at speeds typical to positioning mechanisms. This paper presents the results of numerical research performed with the MES finite element method and also the results of experimental research on the innovative worm gear drive with an axially adaptive worm. The results analysis has led to the conclusion, that the described solutions allow reduction of backlash to 5–15%, and even greater reduction of its standard deviation – that is 5–10% – of their initial values.
Rocznik
Strony
983--999
Opis fizyczny
Bibliogr. 45 poz., rys., wykr.
Twórcy
autor
  • Faculty of Mechanical Engineering, Koszalin University of Technology, Raclawicka 15-17, 75-620 Koszalin, Poland
autor
  • Faculty of Mechanical Engineering, Koszalin University of Technology, Raclawicka 15-17, 75-620 Koszalin, Poland
autor
  • Faculty of Mechanical Engineering, Koszalin University of Technology, Raclawicka 15-17, 75-620 Koszalin, Poland
Bibliografia
  • [1] T.Y. Chen, J.N. Perng, S.J. Chiou, Two-stage optimum design of the dual-lead worm, Eng. Optim. 35 (5) (2010) 561–572. , http://dx.doi.org/10.1080/03052150310001602344.
  • [2] D.K. Prasanga, E. Sariyildiz, K. Ohnishi, Compensation of backlash for geared drive systems and thrust wires used in teleoperation, IEEJ J. Ind. Appl. 4 (5) (2015) 514–525. , http://dx. doi.org/10.1541/ieejjia.4.514.
  • [3] J. Otsuka, S. Ichikawa, T. Masuda, K. Suzuki, Development of a small ultraprecision positioning device with 5 nm resolution, Meas. Sci. Technol. 16 (11) (2005) 2186–2192. , http://dx.doi. org/10.1088/0957-0233/16/11/008.
  • [4] W. Kacalak, M. Majewski, Z. Budniak, Worm gear drives with adjustable backlash, J. Mech. Robot. 8 (1) (2015), http://dx.doi. org/10.1115/1.4030164, 014504-1–014504-7.
  • [5] X. Deng, J. Wang, M.F. Horstemeyer, Modification design method for an enveloping hourglass worm gear with consideration of machining and misalignment errors, Chin. J. Mech. Eng. 26 (5) (2013) 948–956. , http://dx.doi.org/10.3901/ CJME.2013.05.948.
  • [6] W. Predki, B. Bauer, Low-backlash worm gears with niti shape memory alloys, ESOMAT (07002) (2009) 1–8. , http://dx.doi.org/ 10.1051/esomat/200907002.
  • [7] D. Biedny, Fundamental Principles of Backlash Adjustment and Geometrical Parameters Selection in a Worm Gear Drive With a Locally Axially and Radially Adaptive Worm, 2007, pp. 1–186 Doctoral dissertation – unpublished.
  • [8] V. Simon, The influence of gear hobbing on worm gear characteristics, J. Manuf. Sci. Eng. 129 (5) (2007) 919–925. , http://dx.doi.org/10.1115/1.2752524.
  • [9] M. Nordin, P.O. Gutman, Controlling mechanical systems with backlash – a survey, Automatica 38 (10) (2002) 1633–1649. , http://dx.doi.org/10.1016/S0005-1098(02)00047-X.
  • [10] J. Wang, T.C. Lim, M. Li, Dynamics of a hypoid gear pair considering the effects of time-varying mesh parameters and backlash nonlinearity, J. Sound Vib. 308 (1-2) (2007) 302–329. , http://dx.doi.org/10.1016/j.jsv.2007.07.042.
  • [11] W.L. Chen, C.B. Tsay, Contact characteristics of recess action worm gear drives with double-depth teeth, J. Mech. Des. 133 (11) (2011) 111006, http://dx.doi.org/10.1115/1.4004985.
  • [12] L. Dudas, Modelling and simulation of a new worm gear drive having point-like contact, Eng. Comput. 29 (3) (2013) 251–272. , http://dx.doi.org/10.1007/s00366-012-0271-0.
  • [13] A.H. Falah, M.A. Alfares, A.H. Elkholy, Localised tooth contact analysis of single envelope worm gears with assembly errors, Int. J. Adv. Manuf. Technol. 68 (9–12) (2013) 2057–2070. , http:// dx.doi.org/10.1007/s00170-013-4821-4.
  • [14] W. Kollek, U. Radziwanowska, Energetic efficiency of gear micropumps, Arch. Civil Mech. Eng. 15 (1) (2015) 109–115. , http://dx.doi.org/10.1016/j.acme.2014.05.005.
  • [15] W. Predki, B. Bauer, Concept of a start-up clutch with nickel-titanium shape memory alloys, Forsch. Ing. 74 (1) (2010) 41– 47. , http://dx.doi.org/10.1007/s10010-010-0114-3.
  • [16] D. Liang, B. Chen, C. Hua, R. Liao, Generation and analysis of gear drive with tubular tooth surfaces having double contact points, Arch. Civil Mech. Eng. 17 (2) (2017) 318–325. , http://dx. doi.org/10.1016/j.acme.2016.10.006.
  • [17] J.P. Vaujany, M. Guingand, D. Remond, Numerical and experimental study of the loaded transmission error of a worm gear with a plastic wheel, J. Mech. Des. 130 (6) (2008) 062602, http://dx.doi.org/10.1115/1.2898877.
  • [18] Z. Jiaxing, K. Ilie, Static shear strength calculation of plastic helical gears mating with steel worm, Int. J. Precis. Eng. Manuf. 15 (2) (2014) 235–239. , http://dx.doi.org/10.1007/s12541-014-0330-0.
  • [19] Y. Zheng, Z.R. Luo, J.Z. Shang, X.M. Wang, N.H. Yu, Dynamics modeling and resonance analysis of anti-backlash gear transmission system based on harmonic balance method, Adv. Mater. Res. 711 (2013) 556–561. , http://dx.doi.org/ 10.4028/www.scientific.net/AMR.711.556.
  • [20] D. Jbily, M. Guingand, J.P. Vaujany, A wear model for worm gear, Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 230 (7-8) (2016) 1290–1302. , http://dx.doi.org/10.1177/0954406215606747.
  • [21] Y. Hiltcher, M. Guingand, J.P. Vaujany, Load sharing of worm gear with a plastic wheel, J. Mech. Des. 129 (1) (2006) 23–30. , http://dx.doi.org/10.1115/1.2359469.
  • [22] J. Brauer, Transmission error in anti-backlash conical involute gear transmissions: a global-local Fe approach, Finite Elem. Anal. Des. 41 (5) (2005) 431–457. , http://dx.doi. org/10.1016/j.finel.2004.04.007.
  • [23] V. Simon, Computer aided loaded tooth contact analysis in cylindrical worm gears, J. Mech. Des. 127 (5) (2004) 973–981. , http://dx.doi.org/10.1115/1.1904050.
  • [24] L. Yao, J.S. Dai, G. Wei, H. Li, Geometric modeling and meshing characteristics of the toroidal drive, J. Mech. Des. 127 (5) (2004) 988–996. , http://dx.doi.org/10.1115/1.1906248.
  • [25] F.L. Litvin, K. Yukishima, K. Hayasaka, I. Gonzalez-Perez, A. Fuentes, Geometry and investigation of klingelnberg-type worm gear drive, J. Mech. Des. 129 (1) (2006) 17–22. , http://dx. doi.org/10.1115/1.2359477.
  • [26] Y. Zhao, D. Su, Z. Zhang, Meshing analysis and technological parameters selection of dual tori double-enveloping toroidal worm drive, Mech. Mach. Theory 45 (9) (2010) 1269–1285. , http://dx.doi.org/10.1016/j.mechmachtheory.2010.04.004.
  • [27] Y. Zhao, Y. Zhang, Determination of the most dangerous meshing point for modified-hourglass worm drives, J. Mech. Des. 135 (3) (2013) 034503, http://dx.doi.org/10.1115/1.4023281.
  • [28] S.H. Kim, M.C. Shin, J.W. Byun, K. Hwan, C.N. Chu, Efficiency prediction of worm gear with plastic worm wheel, Int. J. Precis. Eng. Manuf. 13 (2) (2012) 167–174. , http://dx.doi.org/ 10.1007/s12541-012-0021-7.
  • [29] B.W. Bair, C.B. Tsay, Zk-type dual-lead worm and worm gear drives: contact teeth, contact ratios and kinematic errors, J. Mech. Des. 120 (3) (1998) 422–428. , http://dx.doi.org/10.1115/ 1.2829169.
  • [30] Y.V. Fleytman, Worm/wormgear transmission and apparatus for transmitting rotation utilizing an oscillating input, 1999, Patent (US 5992259 A).
  • [31] S.V. Marinkovic, Split gear assembly for use in a worm gear drive, 1999, Patent (US 5934144 A).
  • [32] X. Deng, J. Wang, M.F. Horstemeyer, K.N. Solanki, J. Zhang, Parametric study of meshing characteristics with respect to different meshing rollers of the antibacklash double-roller enveloping worm gear, J. Mech. Des. 134 (8) (2012) 081004, http://dx.doi.org/10.1115/1.4006829.
  • [33] W. Kacalak, A non-backlash worm gear drive, 1992, Patent (169114).
  • [34] W. Kacalak, M. Majewski, Z. Budniak, A non-backlash worm gear drive, 2014, Patent application (P.409050).
  • [35] W. Kacalak, M. Majewski, Z. Budniak, A worm wheel of a non-backlash worm gear drive, 2014, Patent application (P.410406).
  • [36] W. Kacalak, J. Ryckiewicz, S. Ziolkowski, A worm gear drive with adjustable backlash, 1990, Patent (164102).
  • [37] W. Kacalak, J. Ryckiewicz, A precise worm gear drive, 1990, Patent (164104).
  • [38] W. Kacalak, J. Ryckiewicz, S. Ziolkowski, A worm gear drive for non-backlash torque transmission, 1990, Patent (164105).
  • [39] W. Kacalak, J. Ryckiewicz, S. Ziolkowski, A non-backlash worm gear drive, 1990, Patent (163445).
  • [40] W. Kacalak, A worm gear drive, 1988, Patent (137131).
  • [41] W. Kacalak, Selected Problems of Precise Worm Gear Drives' Construction and Technology (51), Monograph of the Mechanical Engineering Department of Koszalin University of Technology, 1995, pp. 1–90.
  • [42] W. Kacalak, D. Biedny, A non-backlash worm gear drive, 2005, Patent (207801).
  • [43] W. Kacalak, M. Majewski, Z. Budniak, A non-backlash worm gear drive, 2014, Patent application (P.409516).
  • [44] W. Kacalak, R. Lewkowicz, T. Lechowski, A method of worm helical surface's profile inaccuracy measurement and a device for its realization, 1986, Patent (137523).
  • [45] Y. Zhao, Z. Zhang, Computer aided analysis on the meshing behavior of a height-modified dual-torus double-enveloping toroidal worm drive, Comput.-Aided Des. 42 (12) (2010) 1232– 1240. , http://dx.doi.org/10.1016/j.cad.2010.08.007.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bcc04bfa-ab33-48df-90af-b18f793ddb79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.