PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

An Eco-Friendly Absorption Method of Cu2+, Cd2+, and Pb2+ Using the Shells and Chitosan Derived from Solen vagina

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The processing of Mollusca for food consumption generates a large amount of by-products; for instance, shells, which may contaminate and deposit in the marine coastal environment. Therefore, additional processing is needed to reduce and transform shells into valuable materials, such as chitosan or another derivate product. This study aimed to isolate and characterize the chitosan from Solen vagina (known as lorjuk shells in Indonesian) and to determine the application of chitosan. This is to be compared with Solen vagina shell powder that commonly functions as bio-sorbent of water pollutants Cu2+, Cd2+, and Pb2+. The isolated chitosan was characterized based on its physicochemical properties, namely purity as tested by using X-ray fluorescence (XRF), and functional group as confirmed by Fourier transform infrared (FTIR). In addition, bio-absorbent ability was evaluated through a column method, where the chitosan products are used and compared with Solen vagina shell powders. In this study, the chitosan isolated from Solen vagina shells yielded 15.92 ± 1.78% and showed a high deacetylation degree (DD) by 85.00 ± 3.98%. FTIR and physicochemical properties analysis confirmed that the isolated chitosan is of good quality, as standardized by industry regulator; thus, it could be used as food product and bioabsorbent material. Moreover, the bio-absorbent ability of chitosan demonstrated a similar value with S. vagina shell powders, which can absorb more than 92% of heavy metals around second elution. In conclusion, the S. vagina shell powder and the isolated chitosan have the potential as natural bio-absorbent to reduce the heavy metal contents in industrial wastewater.
Rocznik
Strony
212--222
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
  • Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C Universitas Airlangga, Mulyorejo, Surabaya, 60115, Indonesia
  • Pharmacy Academy Jember, Pangandaran street No.42, Sumbersari, Jember, 68125, Indonesia
  • Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C Universitas Airlangga, Mulyorejo, Surabaya, 60115, Indonesia
  • Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C Universitas Airlangga, Mulyorejo, Surabaya, 60115, Indonesia
  • Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C Universitas Airlangga, Mulyorejo, Surabaya, 60115, Indonesia
Bibliografia
  • 1. Abdel-Rahman, R. M., Hrdina, R., Abdel-Mohsen, A. M., Fouda, M. M. G., Soliman, A. Y., Mohamed, F. K., Mohsin, K., Pinto, T. D. 2015. Chitin and chitosan from Brazilian Atlantic Coast: Isolation, characterization and antibacterial activity. International Journal of Biological Macromolecules, 80, 107–120.
  • 2. Abdou, E. S., Nagy, K. S. A., Elsabee, M. Z. 2008. Extraction and characterization of chitin and chitosan from local sources. Bioresource Technology, 99(5), 1359–1367.
  • 3. Ahemad, M., Kibret, M. 2013. Recent Trends in Microbial Biosorption of Heavy Metals: A Review. Biochemistry & Molecular Biology, 1(1), 19.
  • 4. Alharbi, W. R., El-Taher, A. 2017. Environmental geochemistry and mineralogy of molluscan shells as related to their ecology. Arabian Journal of Geosciences, 10(24), 533.
  • 5. AOAC. 2002. Guidelines for Single Laboratory Validation of Chemical Methods for Dietary Supplements and Botanicals. https://members.aoac.org/AOAC_Docs/StandardsDevelopment/SLV_Guidelines_Dietary_Supplements.pdf
  • 6. Arifin, Z., Puspitasari, R., Miyazaki, N. 2012. Heavy metal contamination in Indonesian coastal marine ecosystems: A historical perspective. Coastal Marine Science, 35(1), 227–233.
  • 7. Babos, D. V., Costa, V. C., Sperança, M. A., PereiraFilho, E. R. 2018. Direct determination of calcium and phosphorus in mineral supplements for cattle by wavelength dispersive X-ray fluorescence (WD-XRF). Microchemical Journal, 137, 272–276.
  • 8. Bakkali, K., Martos, N. R., Souhail, B., Ballesteros, E. 2012. Determination of Heavy Metal Content in Vegetables and Oils From Spain and Morocco by Inductively Coupled Plasma Mass Spectrometry. Analytical Letters, 45(8), 907–919.
  • 9. Barakat, M. A. 2011. New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4(4), 361–377.
  • 10. Duarte, M. L., Ferreira, M. C., Marvão, M. R., Rocha, J. 2002. An optimised method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy. International Journal of Biological Macromolecules, 31(1–3), 1–8.
  • 11. El Knidri, H., Belaabed, R., Addaou, A., Laajeb, A., Lahsini, A. 2018. Extraction, chemical modification and characterization of chitin and chitosan. International Journal of Biological Macromolecules, 120, 1181–1189.
  • 12. Gaetke, L. M., Chow, C. K. 2003. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology, 189(1–2), 147–163.
  • 13. Gerente, C., Lee, V. K. C., Le Cloirec, P., McKay, G. 2007. Application of chitosan for the removal of metals from wastewaters by adsorption – Mechanisms and models review. Critical Reviews in Environmental Science and Technology, 37(1), 41–127.
  • 14. Goyal, P., Piara, S., Srivastava, S. 2011. A Novel Eco-friendly Biomaterial Ficus religiosa Leaf Powder (FRLP) for the Removal of Ni (II) Ion from Water Bodies. Asian Journal of Water, Environment and Pollution, 8, 77–82.
  • 15. Heidarieh, M., Maragheh, M. G., Shamami, M. A., Behgar, M., Ziaei, F., Akbari, Z. 2013. Evaluate of heavy metal concentration in shrimp (Penaeus semisulcatus) and crab (Portunus pelagicus) with INAA method. SpringerPlus, 2(1), 1–5.
  • 16. Hossain, A., Aditya, G. 2013. Cadmium biosorption potential of shell dust of the fresh water invasive snail Physa acuta. Journal of Environmental Chemical Engineering, 1(3), 574–580.
  • 17. Hossain, A., Bhattacharyya, S. R., Aditya, G. 2015. Biosorption of cadmium by waste shell dust of fresh water mussel Lamellidens marginalis: Implications for metal bioremediation. ACS Sustainable Chemistry and Engineering, 3(1), 1–8.
  • 18. Kelly-Vargas, K., Cerro-Lopez, M., Reyna-Tellez, S., Bandala, E. R., Sanchez-Salas, J. L. 2012. Biosorption of heavy metals in polluted water, using different waste fruit cortex. Physics and Chemistry of the Earth, 37–39, 26–29.
  • 19. Melgar, M. J., Alonso, J., García, M. A. 2016. Cadmium in edible mushrooms from NW Spain: Bioconcentration factors and consumer health implications. Food and Chemical Toxicology, 88, 13–20.
  • 20. Ministry of Environment and Forestry of The Republic of Indonesia, (2004). Keputusan Menteri Negara Lingkungan Hidup No 51 Tahun 2004 Tentang Baku Mutu Air Laut, Pedoman Penetapan Baku Mutu Lingkungan, Menteri Negara Kependudukan dan Lingkungan Hidup (in Indonesian), Jakarta. https://onlimo.bppt.go.id/Regulasi/km512004.htm
  • 21. Mohammed, M. H., Williams, P. A., Tverezovskaya, O. 2013. Extraction of chitin from prawn shells and conversion to low molecular mass chitosan. Food Hydrocolloids, 31(2), 166–171.
  • 22. Mohiuddin, K. M., Ogawa, Y., Zakir, H. M., Otomo, K., & Shikazono, N. 2011. Heavy metals contamination in water and sediments of an urban river in a developing country. International Journal of Environmental Science & Technology, 8(4), 723–736.
  • 23. Mursida, Tasir, Sahriawati. 2018. Efektifitas Larutan Alkali pada Proses Deasetilasi (in Indonesian). JPHPI, 21(2), 356–366.
  • 24. National Standardization Agency of Indonesia. (2013). Kitosan Syarat Mutu dan Pengolahan (in Indonesian) SNI 7949: 2013. BSN. Jakarta, 8.
  • 25. Palpandi, C., Shanmugam, V., Shanmugam, A. 2009. Extraction of chitin and chitosan from shell and operculum of mangrove gastropod Nerita (Dostia) crepidularia Lamarck. International Journal of Medicine and Medical Sciences, 1(5), 198–205.
  • 26. Panggalo, D., Bahri, S., Sumarni, N. K. 2016. Pemanfaatan Kitosan Cangkang Keong Bakau (Telescopium sp.) Sebagai Pengikat Ion Logam Timbal (Pb) Dalam Larutan (in Indonesian). Kovalen, 2(1), 14–21.
  • 27. Paridah, M., Hamzah, A., Rizal, S., Yap, S., Tye, Y., Nurul Fazita, M., Lai, T., Chong, E., Abdul Khalil, H. 2018. A review of extractions of seaweed hydrocolloids: Properties and applications. J, 12(4).
  • 28. Pavia, D. L., Lampman, G. M., Kriz, G. S., Vyvyan, J. A. 2014. Introduction to spectroscopy. Nelson Education.
  • 29. Perrone, J., Fourest, B., Giffaut, E. 2001. Sorption of nickel on carbonate fluoroapatites. Journal of Colloid and Interface Science, 239(2), 303–313.
  • 30. Rodríguez-Tirado, V., Green-Ruiz, C., Gómez-Gil, B. 2012. Cu and Pb biosorption on Bacillus thioparans strain U3 in aqueous solution: Kinetic and equilibrium studies. Chemical Engineering Journal, 181–182, 352–359.
  • 31. Sangur, K., Leiwakabessy, F., Tuaputty, H., Tuwankotta, L. V., Samloy, S. V., Ratila, C., Salakory, O. B., Matulessy, C., Rumahlatu, D. 2021. Mudskipper as an Indicator Species for Lead, Cadmium and Cuprum Heavy Metal Pollution in the Mangrove, Ambon, Indonesia. Journal of Ecological Engineering, 22(4), 1–19.
  • 32. Śliwiński, M. G., Latty, C. J., Spaleta, K. J., Taylor, R. J., Severin, K. P. 2020. Rapid, non-destructive analysis of calcium and strontium in eggshells by WD-XRF. Chemosphere, 251.
  • 33. Sudirman, N., Husrin, S., Ruswahyuni, R. (2013). Water Quality Standards For Port Area And Water Pollution Index In Fisheries Port Kejawanan, Cirebon. Saintek Perikanan : Indonesian Journal of Fisheries Science and Technology, 9,1.
  • 34. Sun, J., Li, X., Ai, X., Liu, J., Yin, Y., Huang, Y., Zhou, H., Huang, K. 2018. Efficient removal of cadmium from soil-washing effluents by garlic peel biosorbent. Environmental Science and Pollution Research, 25(19), 19001–19011.
  • 35. Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., Sutton, D. J. 2012. Molecular, clinical and environmental toxicicology (3): Environmental Toxicology. In Molecular, Clinical and Environmental Toxicology (101).
  • 36. The United States Pharmacopoei. 2018. United States Pharmacopoeia 41, United States Pharmacopoeial Convention, Rockville, MD.
  • 37. Wang, X., Liang, X., Wang, Y., Wang, X., Liu, M., Yin, D., Xia, S., Zhao, J., Zhang, Y. 2011. Adsorption of Copper (II) onto activated carbons from sewage sludge by microwave-induced phosphoric acid and zinc chloride activation. Desalination, 278(1–3), 231–237.
  • 38. Wu, F. C., Tseng, R. L., Juang, R. S. 2010. A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals. Journal of Environmental Management, 91(4), 798–806.
  • 39. Zamri, A. I., Latiff, N. F., Abdullah, Q. H., Ahmad, F. 2020. Extraction and optimization of chitosan from razor clam (Ensis arcuatus) shells by using response surface methodology (RSM). Food Research, 4(3), 674–678.
  • 40. Zhang, L., Zeng, Y., Cheng, Z. 2016. Removal of heavy metal ions using chitosan and modified chitosan: A review. Journal of Molecular Liquids, 214, 175–191.
  • 41. Zhang, Z., Wang, P., Zhang, J., Xia, S. 2014. Removal and mechanism of Cu (II) and Cd (II) from aqueous single-metal solutions by a novel biosorbent from waste-activated sludge. Environmental Science and Pollution Research, 21(18), 10823–10829.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bcbe71f4-9aa4-4634-94af-388b787fc7df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.