Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Issues related to braking and acceleration in vehicles represent both technical and environmental challenges, regard less of the type of drive, whether combustion or electric. In conventional vehicles, the emission of particulate matter is a problem associated with the friction between brake pads and discs, leading to air pollution and health hazards. Brake dust contributes to up to 55% of particulate matter in urban environments. In electric vehicles, the processes of braking and rapid acceleration affect battery wear; however, thanks to energy recovery technology, it is possible to recuperate up to 70% of the kinetic energy. This paper proposes a solution involving the placement of induction loops before intersections with traffic lights to enable the recovery and storage of energy, which could be used to power vehicles waiting at intersections, as well as placement behind intersections to supply power to vehicles accelerating when leaving the intersection. The study considers the application of various energy storage technologies, such as flow batteries, supercapacitors, and flywheels. Each of these technologies offers unique benefits and limitations, such as long operational life, a high number of charge/discharge cycles, and environmental friendliness. Simulations per formed using AIMSUN. Next software made it possible to analyze energy consumption and pollutant emissions in various scenarios, indicating the potential benefits of traffic optimization, the use of electric vehicles, and energy recov ery. The research results highlight the importance of traffic smoothness and the use of energy storage technologies to reduce pollutant emissions (possible reduction: CO2 by over 40%, NOx by 48%, PM by 73%, and VOC by 40%) and energy consumption (lack of smooth traffic flow leads to approximately 159% higher energy use). The proposed use of energy storage technologies at intersections may significantly decrease particulate and carbon dioxide emissions. The final choice of energy storage technology will depend on local conditions, such as space availability, investment costs, and market availability.
Czasopismo
Rocznik
Tom
Strony
195--206
Opis fizyczny
Bibliogr. 47 poz., il., tab.
Twórcy
autor
- Warsaw University of Technology, Faculty of Transport, Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Transport, Warsaw, Poland
autor
- University of Zilina, Faculty of Operation and Economics of Transport and Telecomunications, Zilina, Slovakia
autor
- Vilnius Gediminas Technical University, Department of Automotive Engineering, Vilnius, Lithuania
Bibliografia
- 1. Afif, A., Rahman, S. M., Tasfiah Azad, A., Zaini, J., Islan, M. A., & Azad, A. K. (2019). Advanced materials and technologies for hybrid supercapacitors for energy storage – A review. Journal of Energy Storage, 25, 100852. https://doi.org/10.1016/j.est.2019.10085.
- 2 Amin, I. K., Islam, Md. N., Hasan, Md. K., Jaman, A., & Uddin, M. N. (2023). Design and Analysis of a Bidirectional Wireless Power Transfer System for Dynamic Charging of Electric Vehicles. 2023 IEEE Industry Applications Society Annual Meeting (IAS), 1-8. https://doi.org/10.1109/IAS54024.2023.10406996.
- 3. Amiryar, M. E., & Pullen, K. R. (2020). Analysis of Standby Losses and Charging Cycles in Flywheel Energy Storage Systems. Energies, 13(17), 4441. https://doi.org/10.3390/en13174441.
- 4. Anbumani, K., Janani S, M., J, P., M, S., & B, D. (2023). Integrating Regenerative Braking with Advanced Battery Management for Sustainable Transportation. 2023 Intelligent Computing and Control for Engineering and Business Systems (ICCEBS), 1-7. https://doi.org/10.1109/ICCEBS58601.2023.10449122.
- 5. Bennaya, S., & Kilani, M. (2024). Evaluating the Benefits of Promoting Intermodality and Active Modes in Urban Transportation: A Microsimulation Approach. In F. Belaïd & A. Arora (Eds.), Smart Cities (pp. 279-294). Springer International Publishing. https://doi.org/10.1007/978-3-031-35664-3_15.
- 6. Bingham, C., Walsh, C., & Carroll, S. (2012). Impact of Driving Characteristics on Electric Vehicle Energy Consumption and Range. Iet Intelligent Transport Systems, 6(1), 29-35. https://doi.org/10.1049/iet-its.2010.0137.
- 7. Chen, B., Chen, Y., Wu, Y., Xiu, Y., Fu, X., & Zhang, K. (2023). The Effects of Autonomous Vehicles on Traffic Efficiency and Energy Consumption. Systems, 11(7), 347. https://doi.org/10.3390/systems11070347.
- 8. Choi, C., Kim, S., Kim, R., Choi, Y., Kim, S., Jung, H., Yang, J. H., & Kim, H.-T. (2017). A review of vanadium electrolytes for vanadium redox flow batteries. Renewable and Sustainable Energy Reviews, 69, 263-274. https://doi.org/10.1016/j.rser.2016.11.188.
- 9. Cristescu, C., Drumea, P., Ion, D., Dumitrescu, C., & Chirit, C. (2011). Mechatronic Systems for Kinetic Energy Recovery at the Braking of Motor Vehicles. In H. Martinez-Alfaro (Ed.), Advances in Mechatronics. InTech. https://doi.org/10.5772/24420.
- 10. Czagany, M., Hompoth, S., Keshri, A. K., Pandit, N., Galambos, I., Gacsi, Z., & Baumli, P. (2024). Supercapacitors: An Efficient Way for Energy Storage Application. Materials, 17(3), 702. https://doi.org/10.3390/ma17030702.
- 11. Esparcia, E. A., Castro, M. T., Odulio, C. M. F., & Ocon, J. D. (2022). A stochastic techno-economic comparison of generation-integrated long duration flywheel, lithium-ion battery, and lead-acid battery energy storage technologies for isolated microgrid applications. Journal of Energy Storage, 52, 104681. https://doi.org/10.1016/j.est.2022.104681.
- 12. Gołda, I. J., Gołębiowski, P., Izdebski, M., Kłodawski, M., Jachimowski, R., & Szczepański, E. (2017). The evaluation of the sustainable transport system development with the scenario analyses procedure. Journal of Vibroengineering, 19(7), 5627-5638. https://doi.org/10.21595/jve.2017.19275.
- 13. Haidl, P., Buchroithner, A., Schweighofer, B., Bader, M., & Wegleiter, H. (2019). Lifetime Analysis of Energy Storage Systems for Sustainable Transportation. Sustainability, 11(23), 6731. https://doi.org/10.3390/su11236731.
- 14. Hasan, U., Whyte, A., & AlJassmi, H. (2022). A Microsimulation Modelling Approach to Quantify Environmental Footprint of Autonomous Buses. Sustainability, 14(23), 15657. https://doi.org/10.3390/su142315657.
- 15. Jacyna, M., & Merkisz, J. (2014). Proecological Approach to Modelling Traffic Organization in National Transport System. Archives of Transport, 30(2), 31-41. https://doi.org/10.5604/08669546.1146975.
- 16. Jacyna, M., Wasiak, M., Kłodawski, M., & Lewczuk, K. (2014). Simulation Model of Transport System of Poland as A Tool for Developing Sustainable Transport. Archives of Transport, 31(3), 23-35. https://doi.org/10.5604/08669546.1146982.
- 17. Jacyna, M., Żochowska, R., Sobota, A., & Wasiak, M. (2021). Scenario Analyses of Exhaust Emissions Reduction through the Introduction of Electric Vehicles into the City. Energies, 14(7), 2030. https://doi.org/10.3390/en14072030.
- 18. Jahangard, M., Madarshahian, M., Sabur, H., Rezvani, R., Mohammadzadeh Moghaddam, A., & Huynh, N. (2023). Illegal Maneuver Effect on Traffic Operations at Signalized Intersections: An Observational Simulation-Based Before-After Study Using Response Surface Methodology. Journal of Advanced Transportation, 2023, 1-19. https://doi.org/10.1155/2023/2038167.
- 19. Ji, W., Hong, F., Zhao, Y., Liang, L., Du, H., Hao, J., Fang, F., & Liu, J. (2024). Applications of flywheel energy storage system on load frequency regulation combined with various power generations: A review. Renewable Energy, 223, 119975. https://doi.org/10.1016/j.renene.2024.119975
- 20. Lárusdóttir, E. B., & Úlfarsson, G. F. (2014). Effect of Driving Behavior and Vehicle Characteristics on Energy Consumption of Road Vehicles Running on Alternative Energy Sources. International Journal of Sustainable Transportation, 9(8), 592-601. https://doi.org/10.1080/15568318.2013.843737.
- 21. Li, M., Qiu, C., & Zheng, Z. (2016). Thermal Analysis on Power Battery of Intermittent Discharging under Sample Function. DEStech Transactions on Environment, Energy and Earth Science, peee. https://doi.org/10.12783/dteees/peee2016/3803.
- 22. Li, X., & Palazzolo, A. (2022). A review of flywheel energy storage systems: State of the art and oppor tunities. Journal of Energy Storage, 46, 103576. https://doi.org/10.1016/j.est.2021.103576.
- 23. Mądziel, M., Campisi, T., Jaworski, A., & Tesoriere, G. (2021). The Development of Strategies to Reduce Exhaust Emissions from Passenger Cars in Rzeszow City-Poland. A Preliminary Assessment of the Results Produced by the Increase of E-Fleet. Energies, 14(4), 1046. https://doi.org/10.3390/en14041046.
- 24. Men, Z., Zhang, X., Peng, J., Zhang, J., Fang, T., Guo, Q., Wei, N., Zhang, Q., Wang, T., Wu, L., & Mao, H. (2022). Determining factors and parameterization of brake wear particle emission. Journal of Hazardous Materials, 434, 128856. https://doi.org/10.1016/j.jhazmat.2022.128856.
- 25. Merkisz, J., Andrzejewski, M., Merkisz-Guranowska, A., & Jacyna-Gołda, I. (2014). The Influence of The Driving Style on The CO2 Emissions From A Passenger Car. Journal of KONES. Powertrain and Transport, 21(3), 219-226. https://doi.org/10.5604/12314005.1133212.
- 26. Mintsis, E., Belibassakis, M., Mintsis, G., Basbas, S., & Pitsiava-Latinopoulou, M. (2016). The use of a transport simulation system (AIMSUN) to determine the environmental effects of pedestrianization and traffic management in the center of Thessaloniki. European Journal of Environmental Sciences, 6(1), 25-29. https://doi.org/10.14712/23361964.2016.5.
- 27. Muzir, N. A. Q., Hasanuzzaman, Md., & Selvaraj, J. (2023). Modeling and Analyzing the Impact of Different Operating Conditions for Electric and Conventional Vehicles in Malaysia on Energy, Economic, and the Environment. Energies, 16(13), 5048. https://doi.org/10.3390/en16135048.
- 28. Salek, F., Babaie, M., Redel-Macias, M. D., Ghodsi, A., Hosseini, S. V., Nourian, A., Burby, M. L., & Zare, A. (2020). The Effects of Port Water Injection on Spark Ignition Engine Performance and Emissions Fueled by Pure Gasoline, E5 and E10. Processes, 8(10), 1214. https://doi.org/10.3390/pr8101214.
- 29. Simon, P., Gogotsi, Y., & Dunn, B. (2014). Where Do Batteries and Super capacitors Begin? Science, 343(6176), 1210-1211. https://doi.org/10.1126/science.1249625.
- 30. Sippel, I., Magdin, K., & Evtyukov, S. (2024). Simulation modeling as a decision support system tool for improving the environmental safety of road transport. In A. Gibadullin & K. Eshankulov (Eds.), Third International Conference on Digital Technologies, Optics, and Materials Science (DTIEE 2024) (p. 21). SPIE. https://doi.org/10.1117/12.3035765.
- 31. Su, Z., Liu, Q., & Gong, L. (2023). Energy Consumption Optimization of Connected and Autonomous Vehicles Based on Cooperative Perception in Ramp Overflow Scene. Journal of Circuits, Systems and Computers, 32(16), 2350282. https://doi.org/10.1142/S0218126623502821.
- 32. Szumska, E., & Jurecki, R. (2020). The Effect of Aggressive Driving on Vehicle Parameters. Energies, 13(24), 6675. https://doi.org/10.3390/en13246675.
- 33. Tumminello, M. L., Macioszek, E., Granà, A., & Giuffrè, T. (2023). Evaluating Traffic-Calming-Based Urban Road Design Solutions Featuring Cooperative Driving Technologies in Energy Efficiency Transition for Smart Cities. Energies, 16(21), 7325. https://doi.org/10.3390/en16217325.
- 34. Urząd m.st. Warszawy. (2024, April 11). UM Warszawa. https://um.warszawa.pl/
- 35. Viswanathan, V. V., Crawford, A. J., Thomsen, E. C., Shamim, N., Li, G., Huang, Q., & Reed, D. M. (2023). An Overview of the Design and Optimized Operation of Vanadium Redox Flow Batteries for Durations in the Range of 4-24 Hours. Batteries, 9(4), 221. https://doi.org/10.3390/batteries9040221.
- 36. Wang, J., Besselink, I., & Nijmeijer, H. (2017). Battery Electric Vehicle Energy Consumption Prediction for a Trip Based on Route Information. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 232(11), 1528-1542. https://doi.org/10.1177/0954407017729938.
- 37. Whitehead, A. H. (2023). Safety Considerations of the Vanadium Flow Battery. In C. Roth, J. Noack, & M. Skyllas‐Kazacos (Eds.), Flow Batteries (1st ed., pp. 175-191). Wiley. https://doi.org/10.1002/9783527832767.ch8.
- 38. Wieser, S., Reiland, S., Bondorf, L., Lober, M., Schripp, T., & Philipps, F. (2022). Development and Testing of a Zero Emission Drive Unit for Battery Electric Vehicles. 2022 Second International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART), 1-6. https://doi.org/10.1109/SMART55236.2022.9990033.
- 39. Wu, G., Boriboonsomsin, K., Zhang, W.-B., Li, M., & Barth, M. (2010). Energy and Emission Benefit Comparison of Stationary and in-Vehicle Advanced Driving Alert Systems. Transportation Research Record Journal of the Transportation Research Board, 2189(1), 98-106. https://doi.org/10.3141/2189-11.
- 40. Xiaotong, Y., Zheng, S., Shi, T., Chen, G.-Y., & Yadong, H. (2024). Research on Influencing Factors of Driving Behavior Energy Consumption Based on Multi-Driving Conditions. 84. https://doi.org/10.1117/12.3015786.
- 41. Xu, K., Guo, Y., Lei, G., & Zhu, J. (2023). A Review of Flywheel Energy Storage System Technologies. Energies, 16(18), 6462. https://doi.org/10.3390/en16186462.
- 42. Xu, Z., Ma, R., & Wang, X. (2022). Ultrafast, long-life, high-loading, and wide-temperature zinc ion supercapacitors. Energy Storage Materials, 46, 233-242. https://doi.org/10.1016/j.ensm.2022.01.011.
- 43. Yan, Y., & FAN, Y. (2017). Influence of the Driver Style Difference in the Acceleration Process on the Energy Consumption of the EV Bus. https://doi.org/10.2991/iceat-16.2017.39.
- 44. Yao, E., Yang, Z., Song, Y., & Zuo, T. (2013). Comparison of Electric Vehicle’s Energy Consumption Factors for Different Road Types. Discrete Dynamics in Nature and Society, 2013, 1-7. https://doi.org/10.1155/2013/328757.
- 45. Yao, K., Ye, C., Liu, Y., Yang, M., & Zhao, Y. (2024). Loss and Vibration Analysis of Flywheel Energy Storage Motor for UPS System. 2024 IEEE China International Youth Conference on Electrical Engineering (CIYCEE), 1-6. https://doi.org/10.1109/CIYCEE63099.2024.10846487
- 46. Yu, Y. (2024). Vanadium redox flow battery: Characteristics and application. Applied and Computational Engineering, 58(1), 267-273. https://doi.org/10.54254/2755-2721/58/20240732.
- 47. Zhang, L., Song, G., & Zhang, Z. (2022). Heterogeneity Analysis of Operating Mode Distribution for Modeling Energy Consumption of Light-Duty Vehicles. Transportation Research Record Journal of the Transportation Research Board, 2677(1), 93-109. https://doi.org/10.1177/03611981221098397.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bcbc1ad4-afaf-4254-b8da-cdec6b6840c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.