Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this article a look is taken at interfaces between technology and the human brain. A practical perspective is taken rather than a theoretical approach with experimentation reported on and possible future directions discussed. Applications of this technology are also considered with regard to both therapeutic use and for human enhancement. The culturing of neural tissue and its embodiment within a robot platform is also discussed, as are other implant possibilities such as permanent magnet implantation, EEG external electrode monitoring and deep brain stimulation. In each case the focus is on practical experimentation results that have been obtained as opposed to speculative assumptions.
Czasopismo
Rocznik
Tom
Strony
4--11
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
- School of Systems Engineering, University of Reading, Whiteknights, Reading, RG6 6AY, UK
Bibliografia
- [1] Chiappalone, M., Vato, A., Berdondini, L., Koudelka-Hep, M. and Martinoia, S., Network dynamics and synchronous activity in cultured cortical neurons, International Journal of Neural Systems, Vol. 17, pp. 87-103, 2007.
- [2] DeMarse, T., Wagenaar, D., Blau, A. and Potter, S., The neurally controlled Animat: biological brains acting with simulated bodies, Autonomous Robots, Vol. 11, pp. 305-310, 2001.
- [3] Warwick, K., Nasuto, S., Becerra, V. and Whalley, B., Experiments with an in-vitro robot brain, Chapter in ‘Instinctive Computing’, Lecture Notes in Artificial Intelligence, Y.Cai (Ed.), Vol. 5987, pp. 1-15, 2010.
- [4] Warwick, K., Implications and consequences of robots with biological brains, Ethics and Information Technology, Vol. 12, Issue 3, pp. 223-234, 2010.
- [5] Donoghue, J., Nurmikko, A., Friehs, G. and Black, M., Development of a neuromotor prosthesis for humans, Chapter 63 in Advances in Clinical Neurophysiology, Supplements to Clinical Neurophysiology, Vol. 57, pp. 588-602, 2004.
- [6] Kennedy, P., Andreasen, D., Ehirim, P., King, B., Kirby, T., Mao, H. and Moore, M., Using human extra-cortical local field potentials to control a switch, Journal of Neural Engineering, Vol. 1, Issue 2, pp. 72-77, 2004.
- [7] Hochberg, L., Serruya, M., Friehs, G., Mukand, J., Saleh, M., Caplan, A., Branner, A., Chen, D., Penn, R. and Donoghue, J., Neuronal ensemble control of prosthetic devices by a human with tetraplegia, Nature, Vol. 442, pp. 164-171, 2006.
- [8] Warwick, K., Gasson, M., Hutt, B., Goodhew, I., Kyberd, P., Andrews, B., Teddy, P. and Shad, A., The application of implant technology for cybernetic systems. Archives of Neurology, Vol. 60, Issue 10, pp. 1369-1373, 2003.
- [9] Warwick, K., Gasson, M., Hutt, B., Goodhew, I., Kyberd, P., Schulzrinne, H. and Wu, X., Thought Communication and Control: A First Step Using Radiotelegraphy, IEE Proceedings on Communications, Vol. 151, No. 3, pp. 185-189, 2004.
- [10] Gasson, M., Hutt, B., Goodhew, I., Kyberd, P. and Warwick, K., Invasive Neural Prosthesis for Neural Signal Detection and Nerve Stimulation, International Journal of Adaptive Control and Signal Processing, Vol. 19, Issue 5 (2005) 365-375
- [11] Warwick, K. and Gasson, M., Practical Interface Experiments with Implant Technology, in Lecture Notes in Computer Science, Vol. 3058, edited by Sebe, N., Lew, M. and Huang, T., Computer Vision in Human-Computer Interaction (2004) 7-16
- [12] Pinter, M., Murg, M., Alesch, F., Freundl, B., Helscher, R. and Binder, H., Does deep brain stimulation of the nucleus ventralis intermedius affect postural control and locomotion in Parkinson’s disease?, Movement Disorders, Vol.14, Issue 6, pp. 958-963, 1999.
- [13] Pan, S., Warwick, K., Gasson, M., Burgess, J., Wang, S., Aziz, T. and Stein, J., Prediction of Parkinson’s Disease tremor onset with artificial neural networks, Proc. IASTED Conference BioMed 2007, Innsbruck, Austria, pp. 341-345, 14-16 Feb 2007.
- [14] Wu, D., Warwick, K., Ma, Z., Burgess, J., Pan, S. and Aziz, T., Prediction of Parkinson’s disease tremor onset using radial basis function neural networks, Expert Systems with Applications, Vol. 37, Issue 4, pp. 2923-2928, 2010
- [15] Pan, S., Iplikci, S., Warwick, K. and Aziz, T., Parkinson’s Disease tremor classification – a comparison between support vector machines and neural networks, Expert Systems with Applications, Vol. 39, Issue 12, pp. 10764-10771, 2012.
- [16] Bakstein, E., Burgess, J., Warwick, K., Ruiz, V., Aziz, T. and Stein, J., Parkinsonian tremor identification with multiple local field potential feature classification, Journal of Neuroscience Methods, Vol. 209, Issue 2, pp. 320-330, 2012.
- [17] Trejo, L., Rosipal, R. and Matthews, B., Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 14, Issue 2, pp. 225-229, 2006.
- [18] Millan, J., Renkens, F., Mourino, J. and Gerstner, W., Non-invasive brain-actuated control of a mobile robot by human EEG, IEEE Transactions on Biomedical Engineering, Vol. 51, Issue 6, pp. 1026-1033, 2004
- [19] Tanaka, K., Matsunaga, K. and Wang, H., Electroencephalogram-based control of an electric wheelchair, IEEE Transactions on Robotics, Vol. 21, Issue 4, pp. 762-766, 2005.
- [20] Kumar, N., Brain computer interface, Cochin University of Science & Technology Report, Kochi-682022, August 2008.
- [21] Palaniappan, R., Two-stage biometric authentication method using thought activity brain waves, International Journal of Neural Systems, Vol. 18, Issue 1, pp. 59–66, 2008.
- [22] Daly, I., Nasuto, S. and Warwick, K., Single tap identification for fast BCI control, Cognitive Neurodynamics, Vol. 5, Issue 1, pp. 21-30, 2011.
- [23] Daly, I., Nasuto, S. and Warwick, K., Functional connectivity during single finger taps for BCI control, Pattern Recognition, Vol. 45, Issue 6, pp. 2123-2136, 2012
- [24] Hameed, J., Harrison, I., Gasson, M. and Warwick, K., A novel human-machine interface using subdermal magnetic implants, Proc. IEEE International Conference on Cybernetic Intelligent Systems, Reading, pp. 106-110, Sept. 2010
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bcbbc843-0d22-4021-a1c5-a8a344117e3e