PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Overview of the plant-based synthesis of metal and metal oxide nanoparticles and their potential application in the formation of protective coatings

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Przegląd opartych na surowcach roślinnych metod syntezy nanocząstek metali i tlenków metali oraz ich potencjalne zastosowanie do otrzymywania powłok ochronnych
Języki publikacji
EN
Abstrakty
EN
Technologies for the production of nanomaterials have been developed for many years. Despite the remarkable achievements in this field, nanotechnologies contribute to serious environmental pollution. One of the interesting directions in the search for new, green solutions limiting their harmful impact on nature is the use of plant extracts as substrates in the techniques of synthesis of metal nanoparticles and metal oxides. This article briefly reviews the current state of knowledge on the preparation of metallic nanoparticles via green chemistry synthesis methods. The general mechanism of these processes is presented in an accessible way. In addition, current trends in the field of their use in the formulation of paints and varnishes with antifouling properties and as components of protective coatings preventing corrosion are discussed. A noteworthy way of using metallic nanoparticles in agriculture as a factor inhibiting the negative effects of salinity on the growth of crops was also mentioned. Despite the constantly growing number of scientific reports on these issues, this topic still requires a comprehensive discussion along with a detailed analysis of the synthesis processes. A comprehensive approach will certainly contribute to a better knowledge and understanding of this subject and the improvement of the quality of works devoted to the green synthesis of metallic nanoparticles.
PL
Technologie wytwarzania nanomateriałów są rozwijane od wielu lat. Pomimo niezwykłych osiągnięć w tej dziedzinie nanotechnologie przyczyniają się do poważnego zanieczyszczenia środowiska. Jednym z interesujących kierunków poszukiwania nowych, zielonych rozwiązań ograniczających ich szkodliwy wpływ na przyrodę jest wykorzystanie ekstraktów roślinnych jako substratów w technikach syntezy nanocząstek metali i tlenków metali. W artykule dokonano krótkiego przeglądu obecnego stanu wiedzy na temat otrzymywania nanocząstek metalicznych z użyciem metod syntezy biologicznej. W przystępny sposób przedstawiono ogólny mechanizm przebiegu tych procesów. Omówiono ponadto aktualne trendy w zakresie ich wykorzystywania w recepturowaniu farb i lakierów o właściwościach przeciwporostowych oraz jako składników powłok ochronnych zapobiegających korozji. Zwrócono również uwagę na kwestię zastosowania nanocząstek metalicznych w charakterze związków hamujących negatywny wpływ zasolenia na wzrost roślin uprawnych. Pomimo stale rosnącej liczby doniesień naukowych dotyczących tych zagadnień wciąż wymagają one kompleksowego omówienia wraz ze szczegółową analizą przebiegu procesów syntezy. Całościowe ujęcie z pewnością przyczyni się do lepszego poznania i zrozumienia tej tematyki oraz publikowania prac o wysokiej jakości.
Rocznik
Tom
Strony
197--205
Opis fizyczny
Bibliogr. 49 poz., tab., rys., wykr.
Twórcy
autor
  • Sieć Badawcza Łukasiewicz – Instytut Metali Nieżelaznych, Centrum Materiałów Proszkowych i Kompozytowych, Gliwice
  • Szkoła Doktorów, Politechnika Śląska, Gliwice
  • Sieć Badawcza Łukasiewicz – Instytut Metali Nieżelaznych, Centrum Materiałów Proszkowych i Kompozytowych, Gliwice
  • Szkoła Doktorów, Politechnika Śląska, Gliwice
Bibliografia
  • [1] N. T. T. Nguyen, L. M. Nguyen, T. T. T. Nguyen, T. T. Nguyen, D. T. C. Nguyen, T. V. Tran. 2022. “Formation, Antimicrobial Activity, and Biomedical Performance of Plant-Based Nanoparticles: A Review.” Environmental Chemistry Letters 20: 2531–2571. DOI: 10.1007/s10311-022-01425-w.
  • [2] S. Ying, Z. Guan, P. C. Ofoegbu, P. Clubb, C. Rico, F. He, J. Hong. 2022. “Green Synthesis of Nanoparticles: Current Developments and Limitations.” Environmental Technology and Innovation 26: 102336. DOI: 10.1016/j.eti.2022.102336.
  • [3] G. M. Nair, T. Sajini, B. Mathew. 2022. “Advanced Green Approaches for Metal and Metal Oxide Nanoparticles Synthesis and Their Environmental Applications.” Talanta Open 5: 100080. DOI: 10.1016/j.talo.2021.100080.
  • [4] J. R. Peralta-Videa, Y. Huang, J. G. Parsons, L. Zhao, L. Lopez-Moreno, J. A. Hernandez-Viezcas, J. L. Gardea-Torresdey. 2016. “Plant-Based Green Syn- thesis of Metallic Nanoparticles: Scientific Curiosity or a Realistic Alternative to Chemical Synthesis?” Nanotechnology for Environmental Engineering 1(4): 1–29. DOI: 10.1007/s41204-016-0004-5.
  • [5] G. Oza, A. Reyes-Calderón, A. Mewada, L. G. Arriaga, G. B. Cabrera, D. E. Luna, H. M. N. Iqbal, M. Sharon, A. Sharma. 2020. “Plant-Based Metal and Metal Alloy Nanoparticle Synthesis: A Comprehensive Mechanistic Approach.” Journal of Materials Science 55: 1309–1330. DOI: 10.1007/s10853-019-04121-3.
  • [6] M. Yadi, E. Mostafavi, B. Saleh, S. Davaran, I. Aliyeva, R. Khalilov, M. Nikzamir, N. Nikzamir, A. Akbarzadeh, Y. Panahi, M. Milani. “Current Developments in Green Synthesis of Metallic Nanoparticles Using Plant Extracts: A Review.” 2018. Artificial Cells, Nanomedicine, and Biotechnology 46: 336–343. DOI: 10.1080/21691401.2018.1492931.
  • [7] W. M. Alarif, Y. A. Shaban, M. I. Orif, M. A. Ghandourah, A. J. Turki, H. S. Alorfi, H. R. Z. Tadros. 2023. “Green Synthesis of TiO2 Nanoparticles Using Natural Marine Extracts for Antifouling Activity.” Marine Drugs 21(2): 62. DOI: 10.3390/md21020062.
  • [8] M. E. Taghavizadeh Yazdi, A. Hamidi, M. S. Amiri, R. K. Oskuee, H. A. Hosseini, A. Hashemzadeh, M. Darroudi. 2019. “Eco-Friendly and Plant-Based Synthesis of Silver Nanoparticles Using Allium giganteum and Investigation of Its Bactericidal, Cytotoxicity, and Photocatalytic Effects.” Materials Technology 34(8): 490–497. DOI: 10.1080/10667857.2019.1583408.
  • [9] K. Okaiyeto, H. Hoppe, A. I. Okoh. 2021. “Plant-Based Synthesis of Silver Nanoparticles Using Aqueous Leaf Extract of Salvia officinalis: Characterization and Its Antiplasmodial Activity.” Journal of Cluster Science 32: 101–109. DOI: 10.1007/s10876-020-01766-y.
  • [10] A. Kyzioł, S. Łukasiewicz, V. Sebastian, P. Kuśtrowski, M. Kozieł, D. Majda, A. Cierniak. 2021. “Towards Plant-Mediated Chemistry – Au Nanoparticles Obtained Using Aqueous Extract of Rosa damascena and Their Biological Activity In Vitro.” Journal of Inorganic Biochemistry 214: 111300. DOI: 10.1016/j.jinorgbio.2020.111300.
  • [11] S. G. Ali, M. A. Ansari, M. A. Alzohairy, M. N. Alomary, S. AlYahya, M. Jalal, H. M. Khan, S. M. M. Asiri, W. Ahmad, A. A. Mahdi, A. M. El-Sherbeeny, M. A. El-Meligy. 2020. “Biogenic Gold Nanoparticles as Potent Antibacterial and Antibiofilm Nano-Antibiotics against Pseudomonas aeruginosa.” Antibiotics 9(3): 100. DOI: 10.3390/antibiotics9030100.
  • [12] G. Sharmila, M. F. Fathima, S. Haries, S. Geetha, N. M. Kumar, C. Muthukumaran. 2017. “Green Synthesis, Characterization and Antibacterial Efficacy of Palladium Nanoparticles Synthesized Using Filicium decipiens Leaf Extract.” Journal of Molecular Structure 1138: 35–40. DOI: 10.1016/j.molstruc.2017.02.097.
  • [13] A. Kalaiselvi, S. M. Roopan, G. Madhumitha, C. Ramalingam, G. Elango. 2015. “Synthesis and Characterization of Palladium Nanoparticles Using Catharanthus roseus Leaf Extract and Its Application in the Photo-Catalytic Degradation.”Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 135: 116–119. DOI: 10.1016/j.saa.2014.07.010.
  • [14] S.Rajeshkumar, S.Menon, V.S.Kumar, M.M.Tambuwala, H.A.Bakshi, M.Mehta, S. Satija, G. Gupta, D. K. Chellappan, L. Thangavelu, K. Dua. 2019. “Antibacterial and Antioxidant Potential of Biosynthesized Copper Nanoparticles Mediated through Cissus arnotiana Plant Extract.” Journal of Photochemistry and Photobiology B: Biology 197: 111531. DOI: 10.1016/j.jphotobiol.2019.111531.
  • [15] S. C. Mali, A. Dhaka, C. K. Githala, R. Trivedi. 2020. “Green Synthesis of Copper Nanoparticles Using Celastrus paniculatus Willd. Leaf Extract and Their Photocatalytic and Antifungal Properties.” Biotechnology Reports 27: e00518. DOI: 10.1016/j.btre.2020.e00518.
  • [16] H. Veisi, B. Karmakar, T. Tamoradi, S. Hemmati, M. Hekmati, M. Hamelian. 2021. “Biosynthesis of CuO Nanoparticles Using Aqueous Extract of Herbal Tea (Stachys lavandulifolia) Flowers and Evaluation of Its Catalytic Activity.” Scientific Reports 11: 1983. DOI: 10.1038/s41598-021-81320-6.
  • [17] M. Naseer, U. Aslam, B. Khalid, B. Chen. 2020. “Green Route to Synthesize Zinc Oxide Nanoparticles Using Leaf Extracts of Cassia fistula and Melia azadarach and Their Antibacterial Potential.” Scientific Reports 10: 9055. DOI: 10.1038/s41598-020-65949-3.
  • [18] M. Srinivasan, M. Venkatesan, V. Arumugam, G. Natesan, N. Saravanan, S. Murugesan, S. Ramachandran, R. Ayyasamy, A. Pugazhendhi. 2019. “Green Synthesis and Characterization of Titanium Dioxide Nanoparticles (TiO2 NPs) Using Sesbania grandiflora and Evaluation of Toxicity in Zebrafish Embryos.” Process Biochemistry 80: 197–202. DOI: 10.1016/j.procbio.2019.02.010.
  • [19] M. Manimaran, A. Muthuvel, N. M. Said. 2022. “Microwave-Assisted Green Synthesis of SnO2 Nanoparticles and Their Photocatalytic Degradation and Antibacterial Activities.” Nanotechnology for Environmental Engineering. DOI: 10.1007/s41204-022-00297-3.
  • [20] A. F. V. da Silva, A. P. Fagundes, D. L. P. Macuvele, E. F. U. de Carvalho, M. Durazzo, N. Padoin, C. Soares, H. G. Riella. 2019. “Green Synthesis of Zirconia Nanoparticles Based on Euclea natalensis Plant Extract: Optimization of Reaction Conditions and Evaluation of Adsorptive Properties.” Colloids and Surfaces A: Physicochemical and Engineering Aspects 583: 123915. DOI: 10.1016/j.colsurfa. 2019.123915.
  • [21] T. Roostaie, M. Abbaspour, M. A. Makarem, M. R. Rahimpour. 2022. “Synthesis and Characterization of Biotemplate γ-Al2O3 Nanoparticles Based on Morus alba Leaves.” Topics in Catalysis. DOI: 10.1007/s11244-022-01572-y.
  • [22] A. Ahmad, M. Khan, S. Khan, R. Luque, T. M. Almutairi, A. M. Karami. 2023. “Bio-Construction of MgO Nanoparticles Using Texas Sage Plant Extract for Catalytical Degradation of Methylene Blue via Photocatalysis.” International Journal of Environmental Science and Technology 20: 1451–1462. DOI: 10.1007/s13762-022-04090-2.
  • [23] Z. Sabouri, M. Sabouri, M. S. Amiri, M. Khatami, M. Darroudi. 2020. „Plant-Based Synthesis of Cerium Oxide Nanoparticles Using Rheum turkestanicum Extract and Evaluation of Their Cytotoxicity and Photocatalytic Properties.” Materials Technology 37(8): 555–568. DOI: 10.1080/10667857.2020.1863573.
  • [24] S. M. Roopan, T. V. Surendra, G. Elango, S. H. S. Kumar. 2014. „Biosynthetic Trends and Future Aspects of Bimetallic Nanoparticles and Its Medicinal Applications.” Applied Microbiology and Biotechnology 98(12): 5289–5300. DOI: 10.1007/s00253-014-5736-1.
  • [25] M. Ismail, M. I. Khan, S. B. Khan, M. A. Khan, K. Akhtar, A. M. Asiri. 2018. “Green Synthesis of Plant Supported Cu–Ag and Cu–Ni Bimetallic Nanoparticles in the Reduction of Nitrophenols and Organic Dyes for Water Treatment.” Journal of Molecular Liquids 260: 78–91. DOI: 10.1016/j.molliq.2018.03.058.
  • [26] Z. Sabouri, S. Sabouri, S. S. T. H. Moghaddas, A. Mostafapour, S. M. Gheibihayat, M. Darroudi. 2022. “Plant‐Based Synthesis of Ag‐Doped ZnO/MgO Nanocomposites Using Caccinia macranthera Extract and Evaluation of Their Photocatalytic Activity, Cytotoxicity, and Potential Application as a Novel Sensor for Detection of Pb2+ Ions”. Biomass Conversion and Biorefinery. DOI: 10.1007/s13399-022-02907-1.
  • [27] Y. Cao, H. A. Dhahad, M. A. El‐Shorbagy, H. Q. Alijani, M. Zakeri, A. Heydari, E. Bahonar, M. Slouf, M. Khatami, M. Naderifar, S. Iravani, S. Khatami, F. F. Dehkordi. 2021. “Green Synthesis of Bimetallic ZnO–CuO Nanoparticles and Their Cytotoxicity Properties.” Scientific Reports 11: 23479. DOI: 10.1038/s41598-021-02937-1.
  • [28] M. J. Anjum, H. Ali, W. Q. Khan, J. Zhao, G. Yasin. 2020. Metal/Metal Oxide Nanoparticles as Corrosion Inhibitors. In: S. Rajendran, T. A. Nguyen, S. Kakooei, M. Yeganeh, Y. Li (eds.). Corrosion Protection at the Nanoscale. Amsterdam: Elsevier Science.
  • [29] B. Kopyciński, A. Duda. 2022. „Anthocyanins – Corrosion Inhibitors Straight from Nature.” Ochrona Przed Korozją 65(7): 216–221. DOI: 10.15199/40.2022.7.2.
  • [30] T. M. Rabalao, B. Ndaba, A. Roopnarain, B. Vatsha. 2022. “Towards a Circular Economy: The Influence of Extraction Methods on Phytosynthesis of Metallic Nanoparticles and Their Impact on Crop Growth and Protection.” JSFA Re- ports 2(5): 208–221. DOI: 10.1002/jsf2.44.
  • [31] K.V.Thomas, S.Brooks. 2010. “The Environmental Fate and Effects of Antifouling Paint Biocides.” Biofouling 26(1): 73–88. DOI: 10.1080/08927010903216564.
  • [32] Y. Gu, L. Yu, J. Mou, D. Wu, M. Xu, P. Zhou, Y. Ren. 2020. “Research Strategies to Develop Environmentally Friendly Marine Antifouling Coatings.” Marine Drugs 18(7): 371. DOI: 10.3390/md18070371.
  • [33] M. S. Selim, S. A. El-Safty, M. A. El-Sockary, A. I. Hashem, O. M. Abo Elenien, A. M. El-Saeed, N. A. Fatthallah. 2016.“Smart Photo-Induced Silicone/TiO2 Nano-composites with Dominant
  • [110] Exposed Surfaces for Self-Cleaning Foul-Release Coatings of Ship Hulls.” Materials and Design 101: 218–225. DOI: 10.1016/j.matdes.2016.03.124.
  • [34] M. S. Selim, H. Yang, S. A. El-Safty, N. A. Fatthallah, M. A. Shenashen, F. Q. Wang, Y.Huang. 2019. “Superhydrophobic Coating of Silicone/β-MnO2 NanorodComposite for Marine Antifouling.” Colloids and Surfaces A: Physicochemical and Engineering Aspects 570: 518–530. DOI: 10.1016/j.colsurfa.2019.03.026.
  • [35] M. N. Lakhan, R. Chen, A. H. Shar, K. Chand, A. H. Shah, M. Ahmed, I. Ali, R. Ahmed, J. Liu, K. Takahashi, J. Wang. 2020. “Eco-Friendly Green Synthesis of Clove Buds Extract Functionalized Silver Nanoparticles and Evaluation of Antibacterial and Antidiatom Activity.” Journal of Microbiological Methods 173: 105934. DOI: 10.1016/j.mimet.2020.105934.
  • [36] R. Solano, D. Patiño-Ruiz, A. Herrera. 2020. “Preparation of Modified Paints with Nano-Structured Additives and Its Potential Applications.” Nanomaterials and Nanotechnology 10: 1–17. DOI: 10.1177/1847980420909188.
  • [37] F. Göl, A. Aygün, A. Seyrankaya, T. Gür, C. Yenikaya, F. Şen. 2020. “Green Synthesis and Characterization of Camellia sinensis Mediated Silver Nanoparticles for Antibacterial Ceramic Applications.” Materials Chemistry and Physics 250: 123037. DOI: 10.1016/j.matchemphys.2020.123037.
  • [38] A. Duda, B. Kopyciński. 2022. “Application of Thermal Spray Technologies in Anticorrosive Coatings: A Short Review.” Ochrona przed Korozją 65(2): 5–10. DOI: 10.15199/40.2022.2.1.
  • [39] M. Abedi, S. Sovizi, A. Azarniya, D. Giuntini, M. E. Seraji, H. R. M. Hosseini, C. Amutha, S. Ramakrishna, A. Mukasyan. 2023. “An Analytical Review on Spark Plasma Sintering of Metals and Alloys: From Processing Window, Phase Transformation, and Property Perspective.” Critical Reviews in Solid State and Materials Sciences 48(2): 169–214. DOI: 10.1080/10408436.2022.2049441.
  • [40] O. A. A. El-Shamy, M. A. Deyab. 2023. “Eco-Friendly Biosynthesis of Silver Nanoparticles and Their Improvement of Anti-Corrosion Performance in Epoxy Coatings.” Journal of Molecular Liquids 376: 121488. DOI: 10.1016/j.molliq. 2023.121488.
  • [41] K. J. Jothi, S. Balachandran, K. Palanivelu. 2022. “Synergistic Combination of Phyllanthus niruri/Silver Nanoparticles for Anticorrosive Application.” Materials Chemistry and Physics 279: 125794. DOI: 10.1016/j.matchemphys.2022.125794.
  • [42] R.Saha, K.Subramani, S.A.K.P.M.Raju, S.Rangaraj, R.Venkatachalam. 2018. “Psidium guajava Leaf Extract-Mediated Synthesis of ZnO Nanoparticles under Different Processing Parameters for Hydrophobic and Antibacterial Finishing over Cotton Fabrics.” Progress in Organic Coatings 124: 80–91. DOI: 10.1016/j. porgcoat.2018.08.004.
  • [43] U. R. Sharma, N. Sharma. 2021. “Green Synthesis, Anti-Cancer and Corrosion Inhibition Activity of Cr2O3 Nanoparticles.” Biointerface Research in Applied Chemistry 11(1): 8402–8412. DOI: 10.33263/BRIAC111.84028412.
  • [44] N. Elizondo-Villarreal, L. Verástegui-Domínguez, R. Rodríguez-Batista, E. Gándara-Martínez, A. Alcorta-García, D. Martínez-Delgado, E. A. Rodríguez-Castellanos, F. Vázquez-Rodríguez, C. Gómez-Rodríguez. 2022. “Green Synthesis of Magnetic Nanoparticles of Iron Oxide Using Aqueous Extracts of Lemon Peel Waste and Its Application in Anti-Corrosive Coatings.” Materials 15(23): 8328. DOI: 10.3390/ma15238328.
  • [45] H. O. Shaikhaldein, F. Al-Qurainy, M. Nadeem, S. Khan, M. Tarroum, A. M. Salih, S. Alansi, A. Al-Hashimi, A. Alfagham, J. Alkahtani. 2022. “Assessment of the Impacts of Green Synthesized Silver Nanoparticles on Maerua oblongifolia Shoots under In Vitro Salt Stress”. Materials 15(14): 4784. DOI: 10.3390/ma15144784.
  • [46] N. Mustafa, N. I. Raja, N. Ilyas, M. Ikram, Z. Mashwani, M. Ehsan. 2021. “Foliar Applications of Plant-Based Titanium Dioxide Nanoparticles to Improve Agronomic and Physiological Attributes of Wheat (Triticum aestivum L.) Plants under Salinity Stress.” Green Processing and Synthesis 10(1): 246–257. DOI: 10.1515/gps-2021-0025.
  • [47] A. M. Mogazy, R. S. Hanafy. 2022. “Foliar Spray of Biosynthesized Zinc Oxide Nanoparticles Alleviate Salinity Stress Effect on Vicia faba Plants.” Journal of Soil Science and Plant Nutrition 22: 2647–2662. DOI: 10.1007/s42729-022-00833-9.
  • [48] M. S. Stankovic, N. Niciforovic, M. Topuzovic, S. Solujic. 2011. “Total Phenolic Content, Flavonoid Concentrations and Antioxidant Activity, of the Whole Plant and Plant Parts Extracts from Teucrium Montanum L. Var. Montanum, F. Supinum (L.) Reichenb.” Biotechnology and Biotechnological Equipment 25(1): 2222–2227. DOI: 10.5504/BBEQ.2011.0020.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bcbaf8bf-0af3-41b8-aaa9-d4053f0503f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.