PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

3E - A new paradigm for the development of civil aviation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, in civil aviation, issues related to improving efficiency, reducing the costs of air operations as well as the negative impact of air transport on the environment are of increasing importance. These ideas allow the formulation of the paradigm relating to the development of air transport - ‘more Efficiently, more Economically, more Eco-friendly - 3E’. The article presents in a cross-sectional and synthetic way research conducted by leading scientific centres around the world as well as prototype aviation constructions designed by companies from the aviation industry. Benefits and disadvantages of future propulsions, such as purely electric, hybrid and distributed propulsions, were presented. Conclusions were formulated regarding further possible directions of civil aviation development, taking into account the improvement of its efficiency as well as economic and ecological indicators.
Czasopismo
Rocznik
Strony
3--10
Opis fizyczny
Bibliogr. 37 poz., il. kolor., fot.
Twórcy
autor
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology
Bibliografia
  • [1] AYAR, M., GULEREN, K.M, KARAKOC, T. Motor selection process with AHP on mini electric UAV. International Symposium on Electric Aviation and Autonomous Systems (ISEAS), 2018.
  • [2] BREJLE, B., MARTINS, J. Electric, hybrid, and turboelectric fixed-wing aircraft: A review of concepts, models, and design approaches. Progress in Aerospace Sciences. 2019, 104, 1-19. https://doi.org/10.1016/j.paerosci.2018.06.004
  • [3] DE VRIES, R. Preliminary sizing of a hybrid-electric passenger aircraft featuring over-the-wing distributed-propulsion. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2019-1811
  • [4] DONATEO, T., SPEDICANTO, L. Fuel economy of hybrid electric flight. Applied Energy. 2017, 206, 723-738.
  • [5] FERMANN, Y. et al. Hybrid-electric motive power systems for commuter transport applications. ICAS 2016.
  • [6] FILLIPPONE, A. Fixed and rotary wing aircraft. Butteeorth-Heinemann 2006, USA.
  • [7] FINGER, F.D. et al. A review of configuration design for distributed propulsion transitioning VTOL aircraft. 2017 Asia-Pacific International Symposium on Aerospace Technology (APISAT2018).
  • [8] FINGER, F.D. et al. On aircraft design under the consideration of hybrid-electric propulsion systems. 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT2018).
  • [9] FINGER, F.D., BRAUN, C. Case studies in initial sizing for hybrid-electric general aviation aircraft. 2018 AIAA/IEEE Electric Aircraft Technologies Symposium. https://doi.org/10.2514/6.2018-5005
  • [10] FINGER, F.D., BRAUN, C. Impact of engine failure constraints on the initial sizing of hybrid-electric GA aircraft. AI-AA Scitech 2019 Forum, San Diego. https://doi.org/10.2514/6.2019-1812
  • [11] FINGER, F.D., BRAUN, C., CEES, B. Impact of electric propulsion technology and mission requirements on the performance of VTOL UAVs. CEAS Aeronautical Journal. 2019, 10, 827-843.
  • [12] FINGER, F.D., CEES, B.,BRAUN, C., Initial sizing methodology for hybrid-electric general aviation aircraft. Journal of Aircraft. 2019 (published online). https://doi.org/10.2514/1.C035428
  • [13] GEISS, I., STROHMAYER, A., et al. Optimized operation strategies for serial hybrid-electric aircraft aviation technology. Integration, and Operations Conference 2018. https://doi.org/10.2514/6.2018-4230
  • [14] GOTTEN, F., FLINGER, F.D., BRAUN, C. Empirical correlations for geometry build-up of fixed wing unmanned air. 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT2018).
  • [15] HOELZEN, J. et al. Conceptual design of operation strategies for hybrid electric aircraft. Energies. 2018, 11(217). https://doi.org/10.3390/en11010217
  • [16] HOELZEN, J. et al. Hybrid electric aircraft propulsion case study for skydiving mission. Aerospace. 2017, 4(45). https://doi.org/10.3390/aerospace4030045
  • [17] ISIKVEREN, A. The method of quadrant based algorithmic nomographs for hybrid/electric aircraft pre-design. Journal of Aircraft. 2017. https://doi.org/10.2514/1.C034355
  • [18] KAI, N. et al. Electrical and electronic technologies in more-electric aircraft: a review. IEEE Access. 2019. https://doi.org/10.1109/ACCESS.2019.2921622
  • [19] KIRNER, R. et al. An assessment of distributed propulsion: Part B - Advanced propulsion system architectures for blended wing body aircraft configurations. Aerospace Science and Technology. 2016, 50, 212-219.
  • [20] KUŹNIAR, M., ORKISZ, M. Analysis of the application of distributed propulsion to the AOS H2 motor glider. Journal of Kones. 2019, 26(2), 85-92.
  • [21] LIU, C., DOULGERIS, G., PANAGIOTIS, L. et al. Turboelectric distributed propulsion system modelling for hybrid-wing-body aircraft.
  • [22] LIU, C., XIAYI, S. Method to explore the design space of a turbo-electric distributed propulsion system. Journal Aerospace Engineering. 2016. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000617.
  • [23] ŁUKASIK, B. Analysis of the possibility of using full-electric, hybrid and turbo-electric technologies for future aircraft propulsion systems, in terms of mission energy consumption, NOx/CO2 emission and noise reduction. Doctoral Thesis. Instytut Lotnictwa 2018.
  • [24] PAWLAK, M., KUŹNIAR, M. Analysis of the wind dependent duration of the cruise phase on jet engine exhaust emissions. Journal of Kones. 2018, 25(3), 371-376.
  • [25] PAWLAK, M., MAJKA, A., KUŹNIAR, M. et al. Emission of selected exhaust compounds in jet engines of a jet aircraft in cruise phase. Combustion Engines. 2018, 173(2), 67-72.
  • [26] PAWLAK, M., KUŹNIAR, M. Determination of CO2 emissions for selected flight parameters of a business jet aircraft. Journal of Kones. 2019, 26(1), 85-92.
  • [27] PAWLAK, M., KUŹNIAR, M. Problematyka emisji toksycznych składników spalin silników lotniczych. Autobusy. 2017, 12, 338-344.
  • [28] PAWLAK, M., MAJKA, A., KUŹNIAR, M. et al. Analysis of wind impact on emission of selected exhaust compounds in jet engines of a business jet aircraft in cruise phase. Combustion Engines. 2018, 173(2), 55-60.
  • [29] PAWLAK, M. Metoda modelowania emisji związków szkodliwych w spalinach silników odrzutowych samolotów pasażerskich w warunkach przelotowych. Uniwersytet Morski w Gdyni 2019.
  • [30] RINGS, R., FLINGER, F.D. et al. Sizing studies of light aircraft with parallel hybrid propulsion systems. 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT2018)
  • [31] STOLL, A.M., BEVIRT, J., MOORE, M. et al. Drag reduction through distributed electric aviation technology. Integration, and Operations Conference. 2014
  • [32] VRATNY, P., HORNUNG, M. Sizing considerations of an electric ducted fan for hybrid energy aircraft. Transportation Research Procedia. 2018. https://doi.org/10.1016/j.trpro.2018.02.037
  • [33] https:// airbus.com/
  • [34] https://emrax.com/
  • [35] https://nasa.gov/
  • [36] https://pipistrel-aircraft.com/
  • [37] http://wankel-ag.de
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bcb6b82e-5518-4150-8c02-fa6eb39c39cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.