PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical modelling of planned corner deposition in 3D concrete printing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Analysis of different path planning strategies and the effects of changing printhead direction in the geometrical conformity and the process precision around 90° corner in order to enable a simple and cost-effective way of facilitating the determination of an optimal printing mode for fast and accurate print corners in 3D concrete printing. Design/methodology/approach: The material flow is characterized by a viscoplastic Bingham fluid. The printhead moves according to a prescribed speed to print the trajectory. The model solves the Navier-Stokes equations and uses the volume of fluid (VOF) technique. The acceleration steps and jerk (j) carry out the direction change. A smoothing factor is provided to smooth the toolpath. Several simulations were performed by varying the smoothing factor and jerk. Findings: Overfilling at the sharp corner was found when the printhead velocity was kept constant while extruding mortar at a fixed extrusion velocity; however, proportional extrusion velocity with the printhead motion has improved the quality of the corner. Otherwise, a slight improvement in the corner shape related to applying a jerk was found. Research limitations/implications: The Computational Fluid Dynamics (CFD) model could take an important amount of computing time to solve the problem; however, it serves as an efficient tool for accelerating different costly and time-consuming path planning processes for 3D concrete printing. Smaller angles and tilted printhead positions should be numerically and experimentally investigated in future research. Practical implications: The developed CFD model is suited for executing parametric studies in parallel to determine the appropriate printing motion strategy for each trajectory with corners. Originality/value: Computational Fluid Dynamics investigation of the path planning strategy for printing trajectory with a right-angle corner in 3D concrete printing.
Rocznik
Strony
71--79
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
  • Euromed Polytechnic School, Euromed Research Center, Euromed University of Fez, Route de Meknès (Rond-point Bensouda), 30000 Fès, Morocco
  • Euromed Polytechnic School, Euromed Research Center, Euromed University of Fez, Route de Meknès (Rond-point Bensouda), 30000 Fès, Morocco
autor
  • Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
  • Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
Bibliografia
  • 1. A. El Magri, S. Vaudreuil, Optimizing the mechanical properties of 3D-printed PLA-graphene composite using response surface methodology, Archives of Materials Science and Engineering 112/1 (2021) 13-22. DOI: https://doi.org/10.5604/01.3001.0015.5928
  • 2. J. Pegna, Exploratory investigation of solid freeform construction, Automation in Construction 5/5 (1997) 427-437. DOI: https://doi.org/10.1016/S0926-5805(96)00166-5
  • 3. G. De Schutter, K. Lesage, V. Mechtcherine, V.N. Nerella, G. Habert, I. Agusti-Juan, Vision of 3D printing with concrete - Technical, economic and environmental potentials. Cement and Concrete Research 112 (2018) 25-36. DOI: https://doi.org/10.1016/j.cemconres.2018.06.001
  • 4. M. Dixit, 3-D printing in building construction: a literature review of opportunities and challenges of reducing life cycle energy and carbon of buildings. In: IOP Conference Series: Earth and Environmental Science 290 (2019) 012012. DOI https://doi.org/10.1088/1755-1315/290/1/012012
  • 5. V. Mechtcherine, F.P. Bos, A. Perrot, W.L. da Silva, V. Nerella, S. Fataei, R.J. Wolfs, M. Sonebi, N. Roussel, Extrusion-based additive manufacturing with cement-based materials - Production steps, processes, and their underlying physics: A review, Cement and Concrete Research 132 (2020) 106037. DOI: https://doi.org/10.1016/j.cemconres.2020.106037
  • 6. R. Comminal, W.R.L. da Silva, T.J. Andersen, H. Stang, J. Spangenberg, Influence of processing parameters on the layer geometry in 3D concrete printing: experiments and modelling, in: F. Bos, S. Lucas, R. Wolfs, T. Salet (eds), Second RILEM International Conference on Concrete and Digital Fabrication. DC 2020, RILEM Bookseries, vol 28, Springer, Cham, 2020, 852-862. DOI: https://doi.org/10.1007/978-3-030-49916-7_83
  • 7. L. Prasittisopin, P. Jiramarootapong, K. Pongpaisanseree, C. Snguanyat, Lean manufacturing and thermal enhancement of single-layer wall with an additive manufacturing (AM) structure, ZKG International 4 (2019) 64-74.
  • 8. I. Nasser, M. Ali, M. Kadhim, Mechanical properties and microstructure of alkali activated mortar containing unexpanded clay, Archives of Materials Science and Engineering 113/2 (2022) 56-68. DOI: https://doi.org/10.5604/01.3001.0015.7018
  • 9. W. Tuvayanond, L. Prasittisopin, Design for Manufacture and Assembly of Digital Fabrication and Additive Manufacturing in Construction: A Review, Buildings 13/2 (2023) 429. DOI: https://doi.org/10.3390/buildings13020429
  • 10. J. Go, S.N. Schiffres, A.G. Stevens, A.J. Hart, Rate limits of additive manufacturing by fused filament fabrication and guidelines for high-throughput system design, Additive Manufacturing 16 (2017) 1-11. DOI: https://doi.org/10.1016/j.addma.2017.03.007
  • 11. T.J. Fleck, J.C. McCaw, S.F. Son, I.E. Gunduz, J.F. Rhoads, Characterizing the vibration-assisted printing of high viscosity clay material, Additive Manufacturing 47 (2021) 102256. DOI: https://doi.org/10.1016/j.addma.2021.102256
  • 12. Marlin-Firmware. Available form: https://marlinfw.org/meta/gcode/ (access in: 6.10.2022)
  • 13. B. Akhoundi, M. Nabipour, O. Kordi, F. Hajami, Calculating printing speed in order to correctly print PLA/continuous glass fiber composites via fused filament fabrication 3D printer. Journal of Thermoplastic Composite Materials 36/1 (2023) 162-181. DOI: https://doi.org/10.1177/0892705721997534
  • 14. L. Li, R. McGuan, R. Isaac, P. Kavehpour, R. Candler, Improving precision of material extrusion 3D printing by in-situ monitoring and predicting 3D geometric deviation using conditional adversarial networks, Additive Manufacturing 38 (2021) 101695. DOI: https://doi.org/10.1016/j.addma.2020.101695
  • 15. H. Giberti, L. Sbaglia, M. Urgo, A path planning algorithm for industrial processes under velocity constraints with an application to additive manufacturing, Journal of Manufacturing Systems 43/1 (2017) 160-167. DOI: https://doi.org/10.1016/j.jmsy.2017.03.003
  • 16. Y. Jin, J. Du, Z. Ma, A. Liu, Y. He, An optimization approach for path planning of high-quality and uniform additive manufacturing, The International Journal of Advanced Manufacturing Technology 92/1 (2017) 651-662. DOI: https://doi.org/10.1007/s00170-017-0207-3
  • 17. F. Bos, R. Wolfs, Z. Ahmed, T. Salet, Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing, Virtual and Physical Prototyping 11/3 (2016) 209-225. DOI: https://doi.org/10.1080/17452759.2016.1209867
  • 18. F. AlSakka, M.H. Senan, A. Abou Yassin, F. Hamzeh, Path Optimization in 3D Concrete Printing to Minimize Weak Bonds Formation. Periodica Polytechnica Architecture 50/2 (2019) 163-168. DOI: https://doi.org/10.3311/PPar.12722
  • 19. R. Comminal, W.R.L. da Silva, T.J. Andersen, H. Stang, J. Spangenberg, Modelling of 3D concrete printing based on computational fluid dynamics. Cement and Concrete Research 138 (2020) 106256. DOI: https://doi.org/10.1016/j.cemconres.2020.106256
  • 20. N. Roussel, J. Spangenberg, J. Wallevik, R. Wolfs, Numerical simulations of concrete processing: From standard formative casting to additive manufacturing, Cement and Concrete Research 135 (2020) 106075. DOI: https://doi.org/10.1016/j.cemconres.2020.106075
  • 21. J. Spangenberg, W.R.L. da Silva, R. Comminal, M.T. Mollah, T.J. Andersen, H. Stang, Numerical simulation of multi-layer 3D concrete printing. RILEM Technical Letters 6 (2021) 119-123. DOI: https://doi.org/10.21809/rilemtechlett.2021.142
  • 22. J. Spangenberg, W.R.L. da Silva, M.T. Mollah, R. Comminal, T.J. Andersen, H. Stang, Integrating Reinforcement with 3D Concrete Printing: Experiments and Numerical Modelling, in: R. Buswell, A. Blanco, S. Cavalaro, P. Kinnell (eds), Third RILEM International Conference on Concrete and Digital Fabrication, DC 2022, RILEM Bookseries, vol 37, Springer, Cham, 2022, 379-384. DOI: https://doi.org/10.1007/978-3-031-06116-5_56
  • 23. R. Comminal, M.P. Serdeczny, D.B. Pedersen, J. Spangenberg, Numerical modeling of the material deposition and contouring precision in fused deposition modelling, Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA, 2018, 13-15.
  • 24. R. Comminal, M.P. Serdeczny, D.B. Pedersen, J. Spangenberg, Motion planning and numerical simulation of material deposition at corners in extrusion additive manufacturing, Additive Manufacturing 29 (2019) 100753. DOI: https://doi.org/10.1016/j.addma.2019.06.005
  • 25. M.T. Mollah, A. Moetazedian, A. Gleadall, J. Yan, W.E. Alphonso, R.B. Comminal, B. Seta, T. Lock, J. Spangenberg, Investigation on corner precision at different corner angles in material extrusion additive manufacturing: An experimental and computational fluid dynamics analysis, Proceedings of the 33rd Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA, 2022, 872-881.
  • 26. N. Roussel, Rheological requirements for printable concretes, Cement and Concrete Research 112 (2018) 76-85. DOI: https://doi.org/10.1016/j.cemconres.2018.04.005
  • 27. Y. Tu, A. Hassan, A. Siadat, G. Yang, Z. Chen, Numerical simulation and experimental validation of deposited corners of any angle in direct ink writing, The International Journal of Advanced Manufacturing Technology 123 (2022) 559-570. DOI: https://doi.org/10.1007/s00170-022-10195-2
  • 28. Flow Science, Inc. FLOW-3D, Version 12.0, Santa Fe, NM, 2019.
  • 29. C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics 39/1 (1981) 201-225. DOI: https://doi.org/10.1016/0021-9991(81)90145-5
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bcb21be2-a53e-461a-9c09-e946c2b7ecf3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.