PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cyclic oxidation of palladium modified and nonmodified aluminide coatings deposited on nickel base superalloys

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Palladium layer (7 μm thick) was deposited on the surface of the Inconel 713 LC, Inconel 625 and CMSX 4 Ni-base superalloys by the electroplating method. Electroplated samples were annealed at 1050 °C for 2 h in the argon atmosphere. The aluminide coatings were deposited by the CVD method. The nonmodified aluminide coating consists of the NiAl phase. Palladium modification let to formation of the (Ni,Pd)Al phase in coatings. The palladium modified as well as nonmodified coatings were oxidized at 1100 C in the air atmosphere. For both Inconel 713 LC and CMSX 4 superalloys palladium modified coatings show better oxidation resistance than nonmodified ones. Palladium inhibits the outward diffusion of substrate elements (cobalt and chromium) during oxidation of the aluminide coating. Moreover, it stabilizes the β-NiAl phase, keeps the higher content of aluminum in the β-NiAl phase for a long time and thus increases the lifetime of the coated substrate.
Rocznik
Strony
130--139
Opis fizyczny
Bibliogr. 23 poz., rys., wykr.
Twórcy
  • Department of Materials Science, Rzeszow University of Technology, W. Pola 2 str., 35-959 Rzeszow, Poland
  • Department of Materials Science, Rzeszow University of Technology, W. Pola 2 str., 35-959 Rzeszow, Poland
Bibliografia
  • [1] F.A. Khalid, N. Hussian, A.H. Qureshi, Microstructural study of oxidation of aluminized coating on Inconel 625, Journal of Materials Engineering and Performance 11 (2002) 211–214.
  • [2] K.S. Chan, N.S. Cheruvu, G.R. Leverant, Coating life prediction for combustion turbine blades, Journal of Engineering for Gas Turbines and Power – Transactions of the ASME 121 (1999) 484–488.
  • [3] M.J. Li, X.F. Sun, H.R. Guan, X.X. Jiang, Z.Q. Hu, The degradation of (Ni,Pd)Al coatings on superalloy IN738 during isothermal oxidation, Surface and Coatings Technology 185 (2004) 172–177.
  • [4] G. Goward, L. Seigle, Diffusion coatings for gas turbine engine hot section parts, Surface Engineering 5 (1994) 611–620.
  • [5] G.W. Meetham, Use of protective coatings in aero gas turbine engines, Materials Science and Technology 2 (1986) 290–294.
  • [6] G. Goward, D. Bone, Mechanisms of formation of diffusion aluminide coatings on nickel-base superalloys, Oxidation of Metals 3 (1971) 475–495.
  • [7] S. Bose, High Temperature Coating, 2007 Burlington.
  • [8] A. Koul, J. Immarigeon, R. Dainty, P. Patnaik, Degradation of advanced aero engine turbine blades, International Materials Park 12 (1994) 69.
  • [9] B.A. Pint, I.G. Wright, W.Y. Lee, Y. Zhang, K. Prυ‛´ßner, K.B. Alexander, Substrate and bond coat compositions: factors affecting alumina scale adhesion, Materials Science and Engineering A 245 (1998) 201–211.
  • [10] S.J. Hong, G.H. Hwang, W.K. Han, S.G. Kang, Cyclic oxidation of Pt/Pd-modified aluminide coating on a nickel-based superalloy at 1150 8C, Intermetallics 17 (2009) 381–386.
  • [11] M. Li, X. Sun, H. Guan, X. Jiang, Z. Hu, Cyclic oxidation behavior of palladium-modified aluminide coating, Surface and Coatings Technology 167 (2003) 106–111.
  • [12] S. Alperine, P. Steinmetz, P. Josso, A. Costantini, High temperature-resistant palladium-modified aluminide coatings for nickel-base superalloys, Materials Science and Engineering A 121 (1989) 367–372.
  • [13] S. Alperine, P. Steinmetz, A.F. Costantini, P. Josso, Structure and high temperature performance of various palladium-modified aluminide coatings: a low cost alternative to platinum alumi-nides, Surface and Coatings Technology 43/44 (1990) 347–360.
  • [14] S.J. Hong, G.H. Hwang, W.K. Han, S.G. Kang, Cyclic oxidation of Pt/Pd-modified aluminide coating on a nickel-based superalloy at 1150 8C, Intermetallics 17 (2009) 381–390.
  • [15] D. He, H. Guan, X. Sun, X. Jiang, Manufacturing, structure and high temperature corrosion on nickel-base superalloy M38, Thin Solid Films 376 (2000) 144–150.
  • [16] EP 0280510 A1, Palladium Electroplating Bath and Process for Plating, 1988.
  • [17] US4486274 A, Palladium Plating Procedure, 1984.
  • [18] L.H. Hihara, R. Adler, R. Latanision, Environmental Degradation of Advanced and Traditional Engineering Materials, Taylor & Francis, 2014.
  • [19] M. Zagula-Yavorska, J. Sieniawski, Microstructural study on oxidation resistance of nonmodified and platinum modified aluminide coating, Journal of Materials Engineering and Performance 23 (2014) 918–926.
  • [20] M. Zielińska, M. Zagula-Yavorska, J. Sieniawski, R. Filip, Microstructure and oxidation resistance of an aluminide coatings on the nickel based superalloy Mar M247 deposited by CVD aluminizing process, Archives of Metallurgy and Materials 58 (2013) 697–701.
  • [21] M. Zagula-Yavorska, J. Morgiel, J. Romanowska, J. Sieniawski, Microstructure and oxidation behaviour investigation of rhodium modified aluminide coating deposited on CMSX 4 superalloy, Journal of Microscopy 261 (2016) 320–325.
  • [22] Y. Niu, W. Wu, D. Boone, J. Smith, J. Zhang, C. Zhen, Oxidation behaviour of simple and Pt-modified aluminide coatings on IN738 at 1100 8C, Journal de Physique IV Colloque 3 (1993) 511–519.
  • [23] P. Steinmetz, S. Alpérine, P. Josso, J. Claude, Effect of palladium-based undercoat on the formation, structure and properties of diffusion aluminide coatings, Journal de Physique IV Colloque 3 (1993) 499–509.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bca84382-e4f7-4ac5-92a6-a00635590e4f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.