PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie ultradźwięków do odkażania osadów ściekowych

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Decontamination of sewage sludge in sonification process
Języki publikacji
PL
Abstrakty
PL
Szerokie możliwości stosowania technik ultradźwiękowych skłaniają do badań nad możliwościami zastosowania tego czynnika w różnych dziedzinach gospodarki. Destrukcyjne działanie ultradźwięków na układy biologiczne może być wykorzystane do pozbywania się niepożądanych mikroorganizmów z danego środowiska, np. osadów ściekowych, które jako nieodłączny produkt oczyszczania ścieków są koncentratem bardzo zróżnicowanej mikroflory patogennej. W artykule przedstawiono wyniki badań nad wpływem pola ultradźwiękowego na wybrane bakterie w osadzie przefermentowanym. W badaniach analizowano zmiany w liczebności bakterii mezofilowych, bakterii laktozo-dodatnich i laktozo-ujemnych oraz w odniesieniu do takich gatunków, jak Enterococcus faecalis oraz Clostridium perfringens. W badaniach zastosowano dezintegrator ultradźwiękowy o częstotliwości 22 kHz i amplitudzie 16 μm. Próby osadu poddano działaniu pola ultradźwiękowego w czasie 10 i 30 minut. Stopień unieszkodliwienia mikroorganizmów zależał od czasu nadźwiękawiania oraz był zróżnicowany w zależności od badanych bakterii.
EN
Significant disproportion between technological development and the capacity of natural environment is one of the major causes of serious disturbances in shaping the biological equilibrium of ecosystems. One of the key issues to be solved in the aspect of sustainable development is efficient processing and utilizing of waste, including sewage sludge. The potential threat of these materials to the natural environment is mainly due to the presence of hazardous chemicals and unsafe sanitary state. The problems associated with the processing and safe managing of sewage sludge resulted in development of new methods or improvement of already existing methods for processing and hygienisation of sewage sludge. These methods include processes that facilitate anaerobic stabilization and ultrasonic dewatering of sewage sludge. The destructive effect of ultrasounds can be also applied to remove pathogenic microorganisms from sewage sludge. The article presents the results of the study on the potential of ultrasounds for the improvement of sanitary state of anaerobically fermented sewage sludge. The efficiency of ultrasonic field was evaluated based on the total number of mesophilic bacteria and the feacal indicators, i.e. the coliform index of Enterococcus faecalis, Clostridium perfringens and the number of lactose negative and positive rods. The samples of sewage sludge came from the Municipal Waste Water Treatment Plant and were taken after the completion of methane fermentation. Each sewage sludge sample was subjected to 4 series of tests that included bacteriological analyzes in the control and in the samples exposed to the ultrasonic field. Ultrasonication was applied to the volume of 100 ml of sewage sludge by the ultrasonic desintegrator UD-20 at the constant frequency of 22 kHz and the amplitude of 16 μm. The exposure time of sewage sludge samples to the ultrasonic field was 10 min and 30 min. The obtained results of microbiological analyzes indicate that the investigated sewage sludge is contaminated microbiologically and poses potential sanitary threat. Also, the obtained results confirmed the destructive effect of ultrasounds on the investigated groups of bacteria and diverse resistance of microorganisms towards ultrasounds. High resistance towards ultrasounds irrespective of the exposure time was observed for the endospores of Clostridium. Diverse resistance was observed between Gram-positive and Gram-negative bacteria. Gram-negative bacteria of Escherichia, Salmonella, Shigella were more sensitive to the ultrasonic field. The total degradation was obtained at shorter exposure time (i.e. 10 min) whereas gram positive bacteria from Enterococcus was observed even when the exposure time was extended to 30 min of ultrasonication. In case of mesophilic bacteria at the exposure time of 10 min the reduction was from 70.96% to 82.63%, and after extending the exposure time the mesophilic bacteria was destroyed in the range of 98.47% to 99.22%.
Rocznik
Strony
459--469
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
autor
  • Politechnika Częstochowska, Wydział Inżynierii Środowiska i Biotechnologii, Instytut Inżynierii Środowiska, ul. Brzeźnicka 60a, 42-200 Częstochowa
Bibliografia
  • [1] Rosik-Dulewska C., Głowala K., Karwaczyńska U., Robak J., Elution of heavy metals from granulates produced from municipal sewage deposits and fly-ash of hard and brown coal in the aspect of recycling for fertilization purposes, Archives of Environmental Protection 2008, 34, (2), 63-67.
  • [2] Dąbrowska L., Rosińska A., Janosz-Rajczyk M., Heavy metals and PCBs in sewage sludge during thermophilic digestion process, Archives of Environmental Protection 2011, 37, 3, 3-13.
  • [3] Clarke B.O., Porter N.A, Marriott P.J., Balckbeard J.R., Investigating the levels and trends of organochlorine pesticides and polychlorinated biphehyl in sewage sludge, Environmental International 2010, 36, 323-329.
  • [4] Harrison E.Z., Oakes S.R., Hysell M., Hay A., Organic chemicals in sewage sludge, Science of Total Environment 2006, 367, 481-497.
  • [5] Strauch D., Pathogenic microorganisms in sludge. Anaerobic digestion and disinfection methods to make sludge usable as a fertilizer, European Water Management 1998, 1, 12-26.
  • [6] Saleem M., Al-Malack M.H., Bukhar A.A., Seasonal variations in the microbial population density present in biological sludge, Environmental Technology 2001, 22, 255-259.
  • [7] Sahlström L., Aspan A., Bagge E., Danielsson-Tham M.-L., Albihn A., Bacterial pathogen incidences in sludge from Swedish sewage treatment plants, Water Research 2004, 38, 1989-1994.
  • [8] Bień J., Nowak D., Biological composition of sewage sludge in the aspect of threats to the natural environment, Archives of Environmental Protection 2014, 40, 4, 79-86.
  • [9] Bradley E.L., Castle L., Chaundry Q., Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries, Trends in Food Science and Technology 2011, 22, 11, 604-610.
  • [10] Li M.R., Sprando R.L., Aplication of nanotechnology in cosmetics, Pharmaceutical Research 2010, 27, 1746-1749.
  • [11] Caturvedi S., Dave P.N., Shah N.K., Applications of nano-catalyst in new era, Journal of Saudi Chemical Society 2012, 16, 3, 307-325.
  • [12] Musee N., Nanowastes and the environment: Potential new waste management paradigm, Environment International 2011, 37, 1, 112-28.
  • [13] Bojeong K., Park Ch., Murayama M., Hochella M.F., Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products, Environmental Science and Technology 2010,44, 19,7509-7514.
  • [14] Straub T.M., Pepper I.L., Gerba C.P., Hazards from pathogenic microorganisms inland-disposed sewage sludge, Reviews of Environmental Contamination and Toxicology 1993, 132, 55-91.
  • [15] Soroka P.M., Cyprowski M., Sowiak M., Szadkowska-Stańczyk I., Occupational exposure to mycotoxins in various branches of industry, Medycyna Pracy 2008, 59, 4, 333-345.
  • [16] Bina B., Movahedian H., Kord I., The effect of lime stabilization on the microbiological quality of sewage sludge, Iranian Journal of Environmental Health Science & Engineering 2004, 1, 1, 34-38.
  • [17] Marcinkowski T., Alkaline stabilization of municipal sewage sludges, Scientific Papers of Institute of Environment Protection Engineering of the Wroclaw University of Technology 2004, 76, Monographs, 4.
  • [18] Czechowski F.R., Marcinkowski T., Sewage sludge stabilisation with calcium hydroxide: Effect on physicochemical properties and molecular composition, Water Research 2006, 40, 1895- -1905.
  • [19] Wolski P., Zawieja I., Effect of ultrasound field on dewatering of sewage sludge, Archives of Environmental Protection 2012, 38, 2, 25-31.
  • [20] Sinisterra J.V., Application of ultrasound to biotechnology: An overview, Ultrasonics 1993, 30, 3, 180-185.
  • [21] Chisti Y., Sonobioreactors: using ultrasound for enhanced microbial productivity, Trends in Biotechnology 2003, 21, 2, 89-93.
  • [22] Tumowa L., Tuma J., Hendrychová H., Effect of ultrasound on the isoflavonoid production in Genista tinctoria L. suspension cultures, Farmacognosy Magazine 2014, 10, 2, 425-429.
  • [23] Ashokkumar M., Applications of ultrasound in food and bioprocessing, Ultrasonics Sonochemistry 2015, 25, 17-23.
  • [24] Doosti M.R., Kargar R., Sayadi M.H., Water treatment using ultrasonic assistance: A review, Proceedings of the International Academy of Ecology and Environmental Sciences 2012, 2, 96- -110.
  • [25] Lee I., Han J.H., The effects of waste-activated sludge pretreatment using hydrodynamic cavitation for methane production, Ultrasonics Sonochemistry 2013, 20, 1450-1455.
  • [26] Zhang P., Zhang G., Wang W., Ultrasonic treatment of biological sludge: Floc disintegration, cell lysis and inactivation. Bioresource Technology 2007, 98, 207-210.
  • [27] Zielewicz E., Indicators of ultrasonic disintegration of sewage sludge, Polish Journal of Environmental Studies 2010, Series of monographs, 2, 268- 272.
  • [28] Machnicka A., Grubel K., Suschka J., The use hydrodynamic disintegration as a means to improve anaerobic digestion of activated sludge, Water SA 2009, 35, 129-132.
  • [29] Wolny L., Bień J., Nowak D., Conditioning and decontamination of sewage sludge in sonification process, Sludge Management Entering the 3rd Millenium Conference 2001, Taipei, Taiwan 462-469.
  • [30] Gogate P., Application of cavitational reactors for water disinfection: Current status and path forward, Journal of Environmental Management 2007, 85, 801-815.
  • [31] Jin X., Li Z., Xie L., Zhao Y., Wang T., Synergistic effect of ultrasonic pre-treatment combined with UV irradiation for secondary effluent disinfection, Ultrasonics Sonochemistry 2013, 20, 1384-1389.
  • [32] Gyles C.L., Shiga toxin-producing Escherichia coli: An overview, Journal of Animal Science 2007, 85, 45-62.
  • [33] Santos R.L., Zhang S., Tsolis R.M., Hingsley R.A., Adams L.G., Bäumler A.J., Animal models of Salmonella infections: enteritis versus typhoid fever, Microbes and Infection 2001, 3, 1335- 1344.
  • [34] Sirous M., Namaki S., Mirshafiey A., Clostridia, Journal of Chinese Clinical Medicine 2009, 4, 35-47.
  • [35] Ryan K.J., Ray C.G., Ahmad N., Drew W.L., Plorde J., Sherris Medical Microbiology, 6th ed. McGraw Hill Education, 2014.
  • [36] Jean D., Chang B., Liao G., Tsou G., Lee D., Reduction of microbial density level in sewage sludge through pH adjustment and ultrasonic treatment, Water Science and Technology 2000, 42, 9, 97-102.
  • [37] Drakopoulou S., Terzakis S., Fountoulakis M.S., Mantzavinos D., Manios T., Ultrasoundinduced inactivation of Gram-Negative and Gram-positive bacteria in secondary treated municipal wastewater, Ultrasonics Sonochemistry 2009, 16, 5, 629-634.
  • [38] Neis U., Blume T., Ultrasonic disinfection of wastewater effluents for high-quality reuse, IWA Regional Symposium on Water Recycling in Mediterranean Region 2002, Iraklio, Greece, 26.- 29.09.2002.
  • [39] Gholami M., Mirzaei R., Mohammadi R., Zarghampour Z., Afshari A., Destruction of Escherichia coli and Enterococcus faecalis using low frequency ultrasound technology: a response surface methodology, Health Scope, Winter 2014, 3(1), e14213, 1-9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bca4136c-54cb-4d12-b0a9-116cf107f10f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.