Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The differences in morpho-anatomical, ecological and biochemical traits of Cyclamen coum subsp. coum, threatened plant listed in CITES (Convention on International Trade in Endangered Species of Wild Fauna & Flora) have been investigated in the central Black Sea region of Turkey in the context of its distribution at different altitudes. We found that shoot length, bulb width, leaf width and length, number of branches and flowers were significantly different along elevation gradient, whereas length of tubers, number of living and dead leaves, number of nodes, specific leaf area (SLA) and leaf mass area (LMA) values, did not differ significantly, PCA analysis revealed that leaf length and width, the number of branches, soil organic matter content and available potassium concentration and N concentrations of above and belowground parts and reproductive effort (RE3) played significant role in differentiation of the studied populations, while several other studied factor were found not significant. The reproductive effort of individuals from the sea level was higher. We suggest that significant differences in the studied traits may indicate the ecotypic differentiation among populations.
Czasopismo
Rocznik
Tom
Strony
211--226
Opis fizyczny
Bibliogr. 67 poz., fot., mapa, tab., wykr.
Twórcy
autor
- Department of Biology, Faculty of Arts and Sciences, University of Ordu, 52750 Ordu, Turkey
autor
- Department of Biology, Faculty of Arts and Sciences, University of Ordu, 52750 Ordu, Turkey
autor
- Department of Biology, Faculty of Arts and Sciences, University of Ordu, 52750 Ordu, Turkey
autor
- Department of Biology, Faculty of Arts and Sciences, University of Ondokuzmayıs, 55200 Ordu, Turkey
Bibliografia
- [1] Allen S. E., Grimshaw H. M., Parkinson J. A. Quarmby C., Roberts J. 1986 — Chemical Analysis (In: Methods in Plant Ecology, Ed: S. B. Chapman) — Blackwell Scientific Publications, Oxford, pp. 411-466.
- [2] Baquedano F. J., Valladares F., Castillo F. J. 2008 — Phenotypic plasticity blurs ecotypic divergence in the response of Quercus coccifera and Pinus halepensis to water stress — Eur. J. Forest Res. 127: 495-506.
- [3] Berjano R., Arista M., Talavera M., Ariza M. J., Ortiz P. L. 2014 — Plasticity and within plant sex-ratio variation in monoecious Emex spinose — Turk J. Bot. 38: 258-267.
- [4] Bradshaw A. D. 2006 — Unravelling phenotypic plasticity in plants — Adv. Genetics, 13: 115-155.
- [5] Callaway R. M., Pennings S. C., Richards C. L. 2003 — Phenotypic plasticity and interactions among plants — Ecology, 84: 1115-1128.
- [6] Casas C., Ninot, J. M. 2003 — Correlation between species composition and soil properties in the pastures of Plana de Vic (Catalonia, Spain) — Acta Bot. Barc. 49: 291-310.
- [7] Chen X., Li Y., Xie Y., Deng Z., Li X., Li F., Hou Z. 2015 — Trade-off between allocation to reproductive ramets and rhizome buds in Carex brevicuspis populations along a small-scale elevational gradient — Sci. Reports, doi: 10.1038/srep12688.
- [8] Cordell S., Goldstein G., Mueller-Dombois D., Webb D., Vitousek P. M. 1998 — Physiological and morphological variation in Metrosideros polymorpha, a dominant Hawaiian tree species, along an altitudinal gradient: the role of phenotypic plasticity — Oecologia, 113: 188-196.
- [9] Corn C. A., Hiesey W. M. 1973 — Altitudinal variation in Hawaiian Metrosideros — Am. J. Bot. 60: 991-1002.
- [10] De Souza Silva M. A., Varassin I. G. 2016 — Effect of rosette size, clonality and spatial distribution on the reproduction of Vriesea carinata (Bromeliaceae) in the Atlantic Forest of Paraná, southern Brazil — Acta Bot. Bras. 30: 401-406.
- [11] Dickison W. D. 2000 — Intergrative Plant Anatomy — Academic Press San Diego, United States.
- [12] Drake D. R., Mueller-Dombois D. 1993 — Population development of rain forest trees in a chronosequence of Hawaiian lava flows — Ecology, 74: 1012-1019.
- [13] Dubé M., Morisset, P. 1996 — Phenotypic plasticity of leaf anatomical characters of Festuca rubra L. (Poaceae) — Can. J. Bot. 74: 1708-1718.
- [14] Duchoslav M. 2009 — Effects of contrasting habitats on the phenology, seasonal growth and dry mass allocation pattern of two bulbous geophytes (Alliaceae) with partly different geographic ranges — Pol. J. Ecol. 57: 15-32.
- [15] Emery R. J. N., Chinnappa C. C. Chmielewski J. G. 1994 — Specialization, Plant Strategies, and Phenotypic plasticity in populations of Stellaria longipes along an elevational gradient — J. Plant Sci. 155: 203-219.
- [16] Fazlıoglu F., Wan J. S. H. Bonser S. P. 2017 — Testing specialization hypothesis on a stress gradient — Aust. Ecol. 42: 40-47.
- [17] Frei R. E., Ghazoul J., Pluess, A. R. 2014 — Plastic responses to elevated temperature in low and high elevation populations of three grassland species — Plosone, e98677.
- [18] Ghalambor C. K., McKay J. K., Carroll S. P., Reznick D. N. 2007 — Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments — Func. Ecol. 21: 394-407.
- [19] Givnish T. J. 2002 — Ecological constraints on the evolution of plasticity in plants — Evol. Ecol. 16: 213-242.
- [20] Gonzales A., Gianoli E. 2004 — Morphological plasticity in response to shading in three Convolvulus species of different ecological breadth — Acta Oecol. 26: 185-190.
- [21] Gönüz A., Özörgücü B. 1999 — An investigation on the morphology, anatomy and ecology of Origanum onites L. — Tr. J. Bot. 23: 19-32.
- [22] Gratani L. 2014 — Plant phenotypic plasticity in response to environmental factors — Adv. Bot. doi: 10.1155/2014/208747.
- [23] Grime J. P., Crick J. C., Rincon J. E. 1986 — The Ecological Significance of Plasticity. (In: Plasticity in plants, Eds: D. H. Jennings, A. J. Trewavas) — Company of Biologists, Cambridge, pp. 5–29.
- [24] Güner A., Aslan S., Ekim T., Vural M., Babac M. T. 2012 — A checklist of the Flora of Turkey (vascular plants) — Publications of Nezahat Gokyigit Botanical Garden, Turkey.
- [25] Hemborg Å. M., Karlsson P. S. 1998 — Altitudinal variation in size effects on plant reproductive effort and somatic cost of reproduction — Ecoscience, 5: 517-525.
- [26] Henderson P. A., Seaby R. M. H. 1999 — Community analysis package 1.5. Pisces Conservation LTD. IRC House, The Square, Pennington, Lymington Hampshire, SO41 8GN, UK.
- [27] Jaeger C. H., Monson R. K. 1992 — Adaptive significance of nitrogen storage in Bistorta bistortoides, an alpine herb — Oecologia, 92: 578-585.
- [28] Jermakowicz E., Brzosko E. 2016 — Demographic responses of boreal-montane orchid Malaxis monophyllos (L.) Sw. populations to contrasting environmental conditions — Acta. Soc. Bot. Pol. 85, doi: 10.5586/asbp.3488.
- [29] Jongman R. H., ter Braak C. J. F., Tongeren O. F. R. 1995 — Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge, 299 pp.
- [30] Kaçar B. 2012 — Soil Analysis (in Turkish). 3rd ed. — Ankara, Turkey Nobel Ltd.
- [31] Kichenin E., Wardle D. A., Peltzer D. A., Morse C. W., Freschet G. T. 2013 — Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient — Funct. Ecol. 27: 1254-1261.
- [32] Kılıç D. D., Kutbay H. G., Ozbucak T., Huseyinova R. 2010 — Foliar resorption in Quercus petraea subsp. iberica and Arbutus andrachne along an elevational gradient — Ann. For. Sci. 67: 213.
- [33] Kılınç M., Kutbay H. G. 2004 — Plant Ecology (in Turkish) — Palme Yayıncılık, Ankara, 387 pp.
- [34] Kleijn D., Treier U. A., Müller-Schärer H. 2005 — The importance of nitrogen and carbohydrate storage for plant growth of the alpine herb Veratrum album — New Phytol. 166: 565-575.
- [35] Kutbay H. G. 1999 — Top Senescence in Sternbergia lutea (L.) Ker-Gawl. ex Sprengel and Narcissus tazetta L. subsp. Tazetta — Tr. J. Bot. 23:127-131.
- [36] Kutbay H. G. 2001 — Nutrient content in leaves from different strata of a swamp forest from Norhhern Turkey — Pol. J. Ecol. 49: 221-230.
- [37] Kutbay H. G., Kılınç M. 2002 — Top senescence in some members of Amaryllidaceae family in central and East Black Sea regions of Turkey — Pak. J. Bot. 34: 173-190.
- [38] Kutbay H. G., Uçkan F. 1998 — Phenotypic plasticity in Turkish Commelina communis L. (Commelinaceae) populations — Tr. J. Bot. 22: 199-204.
- [39] Lemke I., Kolb A., Diekmann M. 2012 — Region and site conditions affect phenotypic trait variation in five forest herbs — Acta Oecol. 39: 18-24.
- [40] Li F. L., Bao W. K. 2014 — Elevational trends in leaf size of Campylotropis polyantha in the arid Minjiang River valley, SW China — J. Arid Environ. 108: 1-9.
- [41] Lortie C., Aaerssen L. W. 1996 — The specialization hypothesis for phenotypic plasticity in plants — Int. J. Plant Sci. 157: 484-487.
- [42] Machar I., Vlckova V., Bucek A., Vozenilek V., Salek L., Jerabkova L. 2017 — Modelling of climate conditions in forest vegetation zones as a support tool for forest management strategy in European beech dominated forests — Forestry, 8: 82, doi:10.3390/f8030082.
- [43] Mahmood A., Mahmood A., Malik R. N., Shinwari Z. K. 2013 — Indigenous knowledge of medicinal plants from Gujranwala district, Pakistan — J. Ethnopharmacology, 148: 714-723.
- [44] Meidner H., Mansfield T. A. 1968 — Physiology of Stomata — McGraw-Hill, London.
- [45] Mueller-Dombis D. 1980 — The Ohia die-back phenomenon in the Hawaiian rain forest. The Recovery Process in Damaged Ecosystems — Ann. Arbor Sci. Pub. 153-161.
- [46] Nautiyal M. C, Nautiyal B. P., Prakash V. 2004 — Effect of Grazing and Climatic Changes on Alpine Vegetation of Tungnath, Garhwal Himalaya, India — The Environmentalist, 24: 125-134.
- [47] Noitsakis B., Tsiouvaras C. 1990 — Seasonal changes in components of leaf water potential and leaf area growth rate in kermes oak — Oecologia, 11: 419-427.
- [48] Obeso J. R. 2002 — The costs of reproduction in plants — New Phytol. 155: 321-348.
- [49] Ozbucak T. B., Akçin Ö. E., Ertürk Ö. 2013 — The change in ecological, anatomical and antimicrobiological properties of the medicinal plant Tilia rubra D.C. subsp. caucasıca (Rupr.) V. Engler along an elevational gradient — Pak. J. Bot. 45: 1735-1742.
- [50] Reekie E. G., Bazzaz F. A. 1987 — Reproductive effort in plants. I. Carbon allocation to reproduction — Am. Nat. 129: 876-896.
- [51] Richards C. L., Bossdorf O., Muth N. Z., Gurevitch J., Pigliucci M. 2006 — Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions — Ecol. Lett. 9: 981-993.
- [52] Schlichting C. D., Levin D. A. 1984 — Phenotypic plasticity of annual Phlox: tests of some hypotheses — Am. J. Bot. 71: 252-260.
- [53] Schoonover J. E., Crim J. F. 2015 — An introduction to soil concepts and the Role of soils in watershed management — J. Contemp. Water Res. Educ. 154: 21-47.
- [54] Shi W., Wang G., Han W. 2012 — Altitudinal variation in leaf nitrogen concentration on the eastern slope of Mount Gongga on the Tibetan Plateau, China — PlosOne 7: e44628.
- [55] Stemmermann L. 1983 — Ecological studies of Hawaiian Metrosideros in a successional context — Pak. J. Bot. 37: 361-373.
- [56] Sultan S. E. 2000 — Phenotypic plasticity for plant development, function and life history — Trends in Plant Sci. 5: 537-542.
- [57] Sultan S. E. 2003 — Phenotypic plasticity in plants: A case study in ecological development — Evol. Develop. 5: 25-33.
- [58] Sun S., Gao X., Cai Y. 2001 — Variations in sexual and asexual reproduction of Scirpus mariqueter along an elevational gradient — Ecol. Res. 16: 263-274.
- [59] Tiwari S. P., Kumar P., Yadav D., Chauhan D. K. 2013 — Comparative morphological, epidermal, and anatomical studies of Pinus roxburghii needles at different altitudes in the North-West Indian Himalayas — Turk. J. Bot. 37: 65-73.
- [60] Turkis S., Ozbucak. T. 2010 — Foliar resorption and chlorophyll content in leaves of Cistus creticus L. (Cistaceae) along an elevational gradient in Turkey — Acta Bot. Croat. 69: 275-290.
- [61] Uziębło A. K. 2015 — Modification of life history and morphometric traits of montane species as an expression of adaptive abilities to different climatic conditions — a case study of Petasites kablikianus Tausch ex Bercht. (the Babia Góra Mt, Western Carpathians, Poland) — Acta Soc. Bot. Pol. 84: 391-400.
- [62] Valladares F., Sanchez-Gomez D., Zavala M. A. 2006 — Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications — J. Ecol. 94: 1103-1116.
- [63] Vardar Y. 1987 — [Plant Anatomy Lectures I (Cell and Tissues)] — Ege Üniversitesi Basımevi, İzmir, (in Turkish).
- [64] Vilá M., Tessier M, Suehs C. M., Brundu G., Carta L., Galanidis A., Lambdon P., Manca M., Médail F., Moragues E., Traveset A., Troumbis A. Y., Hulme P. E. 2006 — Local and regional assessments of the impacts of plant invaders on vegetation structure and soil properties of Mediterranean islands — J. Biogeogr. 33: 853-861.
- [65] Vitousek P. 1992 — Nutrient cycling and nutrient use efficiency — Am. Nat. 119: 553-572.
- [66] Yuan A., Wan S., Zhou X., Subedar A. A., Wallace L. L., Luo Y. 2005 — Plant nitrogen concentration, use efficiency, and contents in a tall grass prairie ecosystem under experimental warming — Glob. Chang. Biol. 11: 1733-1744.
- [67] Zhao H. X., Duan B. L., Lei Y. B. 2015 — Causes for the unimodal pattern of leaf carbon isotope composition in Abies faxoniana trees growing in a natural forest along an altitudinal gradient — J. Mt. Sci. 12: 39-48.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bca10579-d240-414f-b319-8b8cd2b1f521