PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of swell index and swelling pressure from suction tests : a case study of Neogene clays from Warsaw (Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of swell index, swelling pressure and soil suction tests carried out on Neogene clays from Warsaw, depending on the water content, clay fraction, liquid limit, plasticity index, cation exchange capacity, and content of clay minerals and beidellite. These clays are considered expansive soils in Poland, as they are vulnerable to water content variations in the active zone, which result in their volume change and, in consequence, cause damage of foundations and other construction elements. A number of physical, chemical and mineral properties were determined for these clays. The swelling tests were carried out on samples precompacted in Proctor apparatus, at various initial values of water content. The analyses have shown exponential relation of swell index, swelling pressure and suction versus water content. In addition, the investigated relationship between the suction and swell characteristics of tested clays shows good correlation as a power function between these parameters. In addition, validity of correlations between fitting parameters of obtained relationships and soil index properties, such as clay fraction, liquid limit, plasticity index, cation exchange capacity, and content of clay minerals and beidellite, have been demonstrated. The empirical relations are characterized by high values of the correlation coefficient. A very high fit has also been found for a proposed relationship between the swell index and swelling pressure for tested clays.
Rocznik
Strony
738--750
Opis fizyczny
Bibliogr. 51 poz., rys., tab., wykr.
Twórcy
autor
  • University of Warsaw, Faculty of Geology, Institute of Hydrogeology and Engineering Geology, Żwirki i Wigury 93, 02-089 Warszawa, Poland
  • University of Warsaw, Faculty of Geology, Institute of Hydrogeology and Engineering Geology, Żwirki i Wigury 93, 02-089 Warszawa, Poland
Bibliografia
  • 1. Alexander, D.E., 1993. Natural Disasters. Kluwer Academic Publisher, Dordrecht.
  • 2. ASTM D 2435-90. Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading. American Society for Testing and Materials, Philadelphia: 297-308.
  • 3. ASTM D 2487-06. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). American Society for Testing and Materials, Philadelphia: 238-247.
  • 4. ASTM D 4546-90. Standard Test Methods for One-Dimensional Swell or Settlement Potential of Cohesive Soils. American Society for Testing and Materials, Philadelphia: 775-781.
  • 5. ASTM D 5298-94. Standard Test Method for Measurement of Soil Potential (Suction) Using Filter Paper. American Society for Testing and Materials, Philadelphia: 1082-1087.
  • 6. Barański, M., Wójcik, E., 2007. Estimation of ability to deformation changes of Mio-Pliocene clay from experimentation site Stegny in Warsaw (in Polish with English summary). Geologos, 11: 413-420.
  • 7. Barański, M., Wójcik, E., 2008. Estimation of ability to volume changes of Mio-Neogene clay from Warsaw. Geologija, 50: S49-S54.
  • 8. Bell, F.G., Maud, R.R., 1995. Expansive clays and construction, especially of low-rise structures: a viewpoint from Natal, South Africa. Environmental and Engineering Geoscience, 1: 41-59.
  • 9. BS 1377 Part 2: 1990. Methods of Test for Soils for Civil Engineering Purposes. Classification Tests. British Standards Institution, London.
  • 10. Chen, F.H., 1988. Foundation on Expansive Soils. Elsevier, Amsterdam.
  • 11. Cuisiner, O., Masrouri, F., 2005. Hydromechanical behaviour of a compacted swelling soil over a wide suction range. Engineering Geology, 81: 204-212.
  • 12. Duczmal-Czernikiewicz, A., 2013. Evidence of soils and palaeosols in the Poznań Formation (Neogene, Polish Lowland). Geological Quarterly, 57 (2): 189-204.
  • 13. Erzin, Y., Gunes, N., 2011. The prediction of swell percent and swell pressure by using neural networks. Mathematical and Computational Applications, 6: 425-436.
  • 14. Erzin, Y., Gunes, N., 2013. The unique relationship between swell percent and swell pressure of compacted clays. Bulletin of Engineering Geology and Environment, 72: 71-80.
  • 15. Frankowski, Z., Wysokiński, L., 2000. Atlas geologiczno-inżynierski Warszawy (in Polish). Archiwum CAG, Warszawa. No. 2070/2000.
  • 16. Fredlund, D.G., Rahardjo, H., 1993. Soil Mechanics for Unsaturated Soils. John Wiley and Sons, New York.
  • 17. Goraczko, A., Kumor, M.K., 2011. Swelling of Mio-Pliocene clays from the region of Bydgoszcz in comparison to their lithology (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 446: 305-314.
  • 18. Gunes, N., 2009. Determination of swell pressure under load (in Turkish). M.Sc. Thesis, Celal Bayar University, Manisa.
  • 19. Hanumantha Rao, B., Venkataramana, K., Sigh, D.N., 2011. Studies on the determination of swelling properties of soils from suction measurements. Canadian Geotechnical Journal, 48: 375-387.
  • 20. Head, K.H., 1992. Manual of Soil Laboratory Testing, 1: Soil Classification and Compaction Tests. Pentech Press, London.
  • 21. ITB 296, 1990. Instrukcja. Posadowienie budowli na gruntach ekspansywnych (in Polish). Instytut Techniki Budowlanej Warszawa.
  • 22. Izdebska-Mucha, D., Wójcik, E., 2014. Expansivity of Neogene clays and glacial tills from Central Poland. Geological Quarterly 58 (2): 281-290.
  • 23. Kaczyński, R., 2001. Permeability, swelling and microstructure of Neogene clays from Warsaw. In: Clay Sciences for Engineering (eds. K. Adachi and M. Fukue): 281-284. Proceedings of the International Symposium on Suction, Swelling, Permeability and Structure of Clays, Shizuoka, Japan. Balkema.
  • 24. Kaczyński, R., 2002. Engineering-geological evaluation of Mio-Neogene clays in the Warsaw area, central Poland. Acta Geologica Polonica, 52: 437-448.
  • 25. Kaczyński, R., 2003. Overconsolidation and microstructures in Neogene clays. Geological Quarterly, 47 (1): 43-54.
  • 26. Kaczyński, R., Grabowska-Olszewska, B., 1997. Soil mechanics of the potentially expansive clays in Poland. Applied Clay Science, 11: 337-355.
  • 27. Kościówko, H., Wyrwicki, R., 1996. Metodyka badań kopalin ilastych (in Polish). Państwowy Instytut Geologiczny, Warszawa: 56-76.
  • 28. Kumor, M.K., 2008. Selected geotechnical problems of expansive clays in the area of Poland. Architecture Civil Engineering Environment, 4: 75-92.
  • 29. Kumor, M.K., 2016. Iły ekspansywne podłoża budowlanego Bydgoszczy. Wybrane problemy geotechniczne (in Polish). Wydawnictwa Uczelniane UTP w Bydgoszczy.
  • 30. McDowell, Ch., 1959. The relation of laboratory testing to design for pavements and structures on expansive soils. Quarterly of the Colorado School of Mines, 54: 128-153.
  • 31. Merwe, van der D.H., 1964. The prediction of heave from the plasticity index and percentage clay fraction of soils. Civil Engineer in South Africa, 6: 103-106.
  • 32. Niedzielski, A., 1993. Czynniki kształtujące ciśnienie pęcznienia oraz swobodne pęcznienie iłów poznańskich i warwowych (in Polish). Wydawnictwo Akademii Rolniczej w Poznaniu, Poznań.
  • 33. Olson, G.W., 1973. Soil survey interpretation for engineering purposes. FAO Soils Bulletin, 19: 1-24.
  • 34. Pinińska, J., Dobak, P., 1987. Variability of geotechnical parameters in the course of construction of the Warsaw underground (in Polish with English summary). Przegląd Geologiczny, 35: 73-79.
  • 35. Prakash, K., Sridharan, A., 2004. Free swell ratio and clay mineralogy of fine grained soils. Geotechnical Testing Journal, 27: 220-225.
  • 36. Piwocki, M., Badura, J., Przybylski, B., 2004. Neogen (in Polish). In: Budowa Geologiczna Polski, Tom I, Stratygrafia, cz. 3a: Kenozoik, Paleogen, Neogen (eds. T Peryt and M. Piwocki): 71-118. Państwowy Instytut Geologiczny, Warszawa.
  • 37. PN-88/B-04481. Grunty budowlane (in Polish). Badania próbek gruntu. Wydawnictwa Normalizacyjne.
  • 38. Raman,V., 1967. Identifications of expansive soils from the plasticity index and the shrinkage index data. The Indian Engineer, 11: 17-22.
  • 39. Rao, B.H., Venkataramana, K., Singh, D.N., 2011. Studies on the determination of swelling properties of soils from suction measurements. Canadian Geotechnical Journal, 48: 375-387.
  • 40. Ridley, A.M., Wray, W.K., 1995. Suction measurement: a review of current theory and practices. In Proceedings of the First International Conference on Unsaturated Soils, Paris, France, 6-8 September 1995 (eds. E.E. Alonso and P. Delage): 1293-1322. A.A. Balkema, Rotterdam.
  • 41. Sawangsuriya, A., Jotisankasa, A., Vadhanabhuti, B., Lousuphap, K., 2011. Identification of potentially expansive soils causing longitudinal cracks along pavement shoulder in central Thailand. Unsaturated Soils: Theory and Practice 2011 Jotisankasa, Sawangsuriya, Soralump and Mairaing. Kasetsart University, Thailand: 693-698.
  • 42. Seed, H.B., Woodward, R.J., Lundgren, R., 1962. Prediction of swelling potential for compacted clays. Journal of the Soil Mechanics and Foundations Division, 88: 53-87.
  • 43. Sorochan, E.A., 1974. Stroitel'stvo sooruzheniy na nabukhayushchikh gruntakh (in Russian). Stroizdat, Moskva.
  • 44. Sridharan, A., Gurtug, Y., 2004. Swelling behaviour of compacted fine-grained soils. Engineering Geology, 7: 9-18.
  • 45. Sridharan, A., Prakash, K. 2000. Classification procedures for expansive soils. Proceedings of Institution of Civil Engineers: Geotechnical Engineering, 143: 235-240.
  • 46. Stavridakis, E.I., 2006. Assessment of anisotropic behavior of swelling soils on ground and construction work. In: Expansive Soils: Recent Advances in Characterization and Treatment (eds. A.A. Al-Rawas and M.F.A. Goosen): 371-385. Taylor and Francis Group, London.
  • 47. Stamatello, H., Rossman, J., 1955. Iły plioceńskie w Warszawie jako środowisko do wykonywania robót tunelowych (in Polish). Konferencja Mechaniki Gruntów i Fundamentowania, 6.12, 1-7. PAN. Wydz. IV. Komitet Inżynierii Lądowej. Warszawa.
  • 48. Sudjianto, A.T., Suryolelono, K.B., Rifa, A., Mochtar, I.B., 2011. The effect of water content change and variation suction in behaviour swelling of expansive soil. International Journal of Civil and Environmental Engineering, 11: 11-17.
  • 49. Uzundurukan, S., Keskin, S.N., Yildirim, H., Göksan, T.S., Çimen, Ö., 2014. Suction and swell characteristics of compacted clayey soils. Arabian Journal for Science and Engineering, 39: 747-752.
  • 50. Wichrowski, Z., 1981. Mineralogical studies of clays of the Poznań series (in Polish with English summary). Archiwum Mineralogiczne, 37: 93-196.
  • 51. Zhan, L., Chen, P., Ng, C.W.W., 2007 . Effect of suction change on water content and total volume of an expansive clay. Journal of Zhejiang University Science A, 8: 699-706.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc9e10a7-24d2-4df2-901f-008119c06044
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.