PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of the Effect of Flurochloridone and Fluoranthene on the Root and Shoot Anatomy and Morphology of Pea Plants (Pisum sativum)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Despite current efforts to minimize the impact of industry on ecosystems, the environment is polluted by a range of foreign substances, that can have a negative impact on the living organisms. Examples of widely studied substances are polycyclic aromatic hydrocarbons (PAHs) and recently, substances commonly used in conventional agriculture. In our study we focused on the morphology and anatomy of the vegetative organs of pea plants treated with the active substance of herbicides, flurochloridone (FLC), in concentration representing the residual amount in the soil (5 μM), and PAH fluoranthene (FLT) in concentration representing the middle to high environmental load (5 μM). During the long-term cultivation in nutrient solutions modified by the mentioned pollutants, the growth parameters of roots and shoots were observed in the three growth phases (4 and 8 fully developed leaves and the flowering phase). The growth parameters and observation of the morphology were supplemented with root and stem anatomical analysis using the transverse cross-sections. Both xenobiotics caused the decrease in the biomass production, while the more significant inhibition of growth, compared with control plants, was detected in FLC-treated plants, where the root system was reduced up to 75% and growth parameters of the shoots were reduced about more than 50%. The decrease in root biomass production was accompanied by changes in root branching. FLT treatment caused milder growth inhibition, it was observed about 50% reduction of the root system induced by the shortening of the main and lateral roots. Less pronounced, was also the decrease in stem length caused by FLT. Similar information was obtained about the different degrees of effect of FLC and FLT using anatomical analysis. Both studied substances increased the main root diameter accompanied with increase of the average number of the primary cortex layers. Their influence also caused the more intensive formation of exodermis. Changes in anatomical architecture were also observed in stem, where the FLC treatment changed the arrangement of the vascular bundles and decreased their average number. Our elementary morpho-anatomical study suggests that FLC despite its trace concentration could be more detrimental to plants than FLT, known for its harmful effect on living organisms, in relatively higher concentration.
Rocznik
Strony
8--18
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
  • Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic
  • Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic
autor
  • Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic
Bibliografia
  • 1. Abdel-Shafy H.I., Mansour M.S.M. 2016. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107–123. https://doi.org/10.1016/j.ejpe.2015.03.011
  • 2. Aloni R., Gad A.E. 1982. Anatomy of the primary phloem fiber system in Pisum sativum. American Journal of Botany, 69(6), 979–984. https://doi.org/10.2307/2442894
  • 3. Andr J., Kočárek M., Jursík M., Fendrychová V., Tichý L. 2017.Effect of adjuvans on the dissipation, efficacy and selectivity of tree different pre-emergent sunflower herbicides. Plant, Soil and Environment, 63(9), 409–415. https://doi.org/doi:10.17221/365/2017-PSE
  • 4. Arey J., Atkinson R. 2003. Photochemical reactions of PAHs in the atmosphere. In: Douben P.E.T. 2003. PAHs: An ecotoxicological perspective. John Wiley and Sons Inc., United Kingdom.
  • 5. Bartels, P., Watson, C. 1978. Inhibition of Carotenoid Synthesis by Fluridone and Norflurazon. Weed Science, 26(2), 198–203. https://doi.org/10.1017/S0043174500049675
  • 6. Cozzola A.J., Dehnert G.K., White A.M., KarasovW.H. 2022. Effects of subchronic exposure to environmentally relevant concentrations of a commercial fluridone formulation on fathead minnows (Pimephales promelas). Aquatic Toxicology, 244, 106098. https://doi.org/10.1016/j.aquatox.2022.106098
  • 7. Czech Environmental Information Agency (CENIA) and the Ministry of the Environment of the Czech Republic 2021. Report on the environment of the Czech Republic 2020. Available on: https://www.cenia.cz/wp-content/uploads/2021/11/Zprava2020.pdf (in Czech)
  • 8. Desalme D., Binet P., Epron D., Bernard N., Gilbert D., Toussaint M.-L., Plain C., Chiapusio G. 2011. Atmospheric phenanthrene pollution modulates carbon allocation in red clover (Trifolium pratense L.). Environmental Pollution, 159(10), 2759–2765. https://doi.org/10.1016/j.envpol.2011.05.015
  • 9. Dupuy J., Ouvrard S., Leglize P., Sterckeman T. 2015. Morphological and physiological responses of maize (Zea mays) exposed to sand contaminated by phenanthrene. Chemosphere, 124(1), 110–115. https://doi.org/10.1016/j.chemosphere.2014.11.051
  • 10. European Environment Agency: European Industrial Emission Portal: Pollutant and Sector. Available on: https://industry.eea.europa.eu/analyse/pollutant-and-sector
  • 11. European Food Safety Authority 2018. Review of the existing maximum residue levels for flurochloridone according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal, 16(1), 5144. https://doi.org/10.2903/j.efsa.2018.5144
  • 12. Feller C., Bleiholder H., Buhr L., Hack H., Hess M., Klose R., Meier U., Stauss R., Van den Boom T., Weber E. 1995. Phänologische Entwicklungsstadien von Gemüsepflanzen: II. Fruchtgemüse und Hülsenfrüchte. Nachrichtenbl. Deut. Pflanzenschutzd. 47, 217–232. In: Meier U. (ed) 2001. Growth stages of mono-and dicotyledonous plants: BBCH Monograph, Federal Biological Research Centre for Agriculture and Forestry, Germany.
  • 13. Gao Y., Zhu L. 2004. Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere, 55(9), 1169–1178. https://doi.org/10.1016/j.chemosphere.2004.01.037
  • 14. Hernández-Vega J.C., Cady B., Kayanja G., Mauriello A., Cervantes N., Gillespie A., Lavia L., Trujillo J., Alko M., Colón-Carmona A. 2017. Detoxification of polycyclic aromatic hydrocarbons (PAHs) in Arabidopsis thaliana involves a putative flavonol synthase. Journal of Hazardous Materials, 321, 268–280. https://doi.org/10.1016/j.jhazmat.2016.08.058
  • 15. Hooker T.S., Thorpe T.A. 1998. Effects of fluridone and abscisic acid on lateral root initiation and root elongation of excised tomato roots cultured in vitro. Plant Cell, Tissue and Organ Culture, 52, 199–203. https://doi.org/10.1023/A:1006033430898
  • 16. Jajoo A., Mekala N.R., Tomar R.S., Grieco M., Tikkanen M., Aro E.-M. 2014. Inhibitory effects of polycyclic aromatic hydrocarbons (PAHs) on photosynthetic performance are not related to their aromaticity. Journal of Photochemistry and Photobiology B: Biology, 137, 151–155. https://doi.org/10.1016/j.jphotobiol.2014.03.011
  • 17. Jursík M., Kočárek M., Kolářová M., Tichý L. 2020. Effect of different soil and weather conditions on efficacy, selectivity and dissipation of herbicides in sunflower. Plant, Soil and Environment, 66(9), 468–476. https://doi.org/10.17221/223/2020-PSE
  • 18. Kaya A., Yigit E. 2014. The physiological and biochemical effect of salicylic acid on sunflower (Helianthus annuus) exposed to flurochloridone. Ecotoxicology and Environmental Safety, 106, 232–238. https://doi.org/10.1016/j.ecoenv.2014.04.041
  • 19. Khanna S., Gaeta J.W., Conrad J.L., Gross E.S. 2023. Multi-year landscape-scale efficacy analysis of fluridone treatment of invasive submerged aquatic vegetation in the Sacramento–San Joaquin Delta. Biological Invasions. https://doi.org/10.1007/s10530-023-03013-7
  • 20. Klíčová Š., Šebánek J., Hudeová M., Vítková H., Vlašínová H. 2002). The effect of fluridone and flurochloridone on incidence of albinism in pea (Pisum sativum) and on the abscission of leaves of privet (Ligustrum vulgare). Rostlinná výroba, 48(6), 255–260. https://doi.org/10.17221/4237-PSE
  • 21. Kummerová M., Váňová L., Krulová J., Zezulka Š. 2008. The use of physiological characteristic for comparison of organic compounds phytotoxicity. Chemosphere, 71(11), 2050–2059. https://doi.org/10.1016/j.chemosphere.2008.01.060
  • 22. Kummerová M., Váňová L., Fišerová H., Klemš M., Zezulka Š., Krulová J. 2010. Understanding the effect of organic pollutant fluoranthene on pea in vitro using cytokinins, ethylene, ethane and carbon dioxide as indicators. Plant Growth Regulation, 61, 161–174. https://doi.org/10.1007/s10725-010-9462-0
  • 23. Kummerová M., Zezulka Š., Babula P., Váňová L. 2013. Root response in Pisum sativum and Zea mays under fluoranthene stress: Morphological and anatomical traits. Chemosphere, 90(2), 665–673. https://doi.org/10.1016/j.chemosphere.2012.09.047
  • 24. Li W., Chen H., Shen S. 2021. Study on residue and dissipation of flurochloridone by LCMS/MS in potato and soil under open-field conditions in China´s Qinghai Plateau. International journal of environmental analytical chemistry, 100(13), 1–11. https://doi.org/10.1080/03067319.2021.1932855
  • 25. Liu J., Zhang Z., Sheng Y., Gao Y., Thao Z. 2018. Phenanthrene-degrading bacteria on root surfaces: a natural defense that protect plants from phenanthrene contamination. Plant and Soil, 425(1–2), 355–350. https://doi.org/10.1007/s11104-018-3575-z
  • 26. Liu L., Chang X., Zhang Y., Wu C., Li R., Tang L., Zhou Z. 2018. Fluorochloridone induces primary cultured Sertoli cells apoptosis: Involvement of ROS and intracellular calcium ions-mediated ERK1/2 activation. Toxicology In Vitro, 47, 228–237. https://doi: 10.1016/j.tiv.2017.12.006
  • 27. Lónová K., Kalousek P., Klemš M., Fišerová H. 2023. Changes in photosynthetic dispositions in pea plants caused by fluoranthene and flurochloridone: from the subcellular level to the anatomical changes. Acta Physiologiea Plantarum, 45, 11. https://doi.org/10.1007/s11738-022-03494-4
  • 28. Nikoloff N., Natale G.S., Mario D., Soloneski S., Larramendy M. 2014. Flurochloridone-based herbicides induced genotoxicity effects on Rhinella arenarum tadpoles (Anura: Bufonidae). Ecotoxicology and Environmental Safety, 100, 275–281. https://doi.org/10.1016/j.ecoenv.2013.10.021
  • 29. Mishra P.K., Parte V., Bhatnagar R.K., Dhurve O.P. 2022. Effect of pre emergence herbicide Flurochlordone against weed complex in chickpea. The Pharma Innovation Journal, 11(8), 1880-1883.
  • 30. Organisation for Economic Co-operation and Development 2018. Evaluation of environmental policies of the OECD Czech Republic 2018. Czech translation published by the Ministry of the Environment of the Czech Republic, 2018. Available on: https://www.mpo.cz/assets/cz/prumysl/prumysl-a-zivotniprostredi/2019/3/OECD_Hodnoceni-CR_2018_CZ.pdf (in Czech)
  • 31. Oguntimehin I., Bandai S., Sakugawa H. 2013. Mannitol can mitigate negative effects of simulated acid mist and fluoranthene in juvenile Japanese red pine (P. densiflora Sieb. et Zucc.). Environmental Pollution, 174, 78–84. https://doi.org/10.1016/j.envpol.2012.10.023
  • 32. Park H., Song G., Hong T., An G., Park S., Lim W. 2023. Exposure to the herbicide fluridone induces cardiovascular toxicity in early developmental stages of zebrafish. Science of Total Environment, 867, 161535. https://doi.org/10.1016/j.scitotenv.2023.161535
  • 33. Rebeiz C.A., Montazer-Zouhoor A., Hopen, H.J., Wu, S.M. 1984. Photodynamic herbicides: 1. Concept and phenomenology. Enzyme Microbial Technology, 6(9), 390–401. https://doi.org/10.1016/0141-0229(84)90012-7
  • 34. Richter O. 1926. Beiträge zur Ernährungphysilogy der Kuturgräser. I. Über das grosse Eisenbedürfnis der Reispflanze (Oryza sativa L.) Sitzungsberichte der Berliner Akademie der Wissenschaften, 203–242. (in German)
  • 35. Ruzin S.E. 1999. Plant microtechnique and microscopy. Oxford University Press. Oxford.
  • 36. Shen Y., Li J., Shi S., Gu R., Zhan X., Xing B. 2019a. Application of carotenoid to alleviate the oxidative stress caused by phenanthrene in wheat. Environmental Science and Pollution Research, 26(4), 3593–3602. https://doi.org/10.1007/s11356-018-3832-y
  • 37. Shen Y., Li J., Gu R., Zhan X., Xing B. 2019b. Proteomic analysis for phenanthrene-elicited wheat chloroplast deformation. Environment International, 123, 273–281. https://doi.org/10.1016/j.envint.2018.11.074
  • 38. Shi J., Xie C., Liu H.B., Krausz K.W., Bewley C.A., Zhang Z., Gonzalez F.J. 2016. Metabolism and bioactivation of fluorochloridone, a novel selective herbicide, in vivo and in vitro. Environmental Science and Technology, 50(17), 9652–9660. https://doi.org/10.1021/acs.est.6b02113
  • 39. Sondhia S. 2014. Herbicides residues in soil, water, plants and non-targeted organisms and human health implications: an Indian perspective. Indian Journal of Weed Science, 46(1), 66–85.
  • 40. Soukup A. 2014. Selected simple methods of plant cell wall histochemistry and staining for light microscopy. Methods in molecular biology, 1080, 25–40. https://doi.org/10.1007/978-1-62703-643-6_2
  • 41. Sun J., Zan J., Zang X. 2022. Research of Fluridone’s Effects on Growth and Pigment Accumulation of Haematococcus pluvialis Based on Transcriptome Sequencing. International Journal of Molecular Sciences, 23(6), 3122. https://doi.org/10.3390/ijms23063122
  • 42. Sun K., Liu J., Jin L., Gao Y. 2014. Utilizing pyrenedegrading endophytic bacteria to reduce the risk of plant pyrene contamination. Plant and Soil, 374, 251–262. http://doi.org/10.1007/s11104-013-1875-x
  • 43. Svobodníková L., Kummerová M., Zezulka Š., Babula P., Sendecká K. 2020. Root response in Pisum sativum under naproxen stress: Morpho- anatomical, cytological, and biochemical traits. Chemosphere, 258, 127411. https://doi.org/10.1016/j.chemosphere.2020.127411
  • 44. Tennant D. 1975. A Test of Modified Line Intersect Method of Estimating Root Length. Journal of Ecology, 63, 995–1001. http://dx.doi.org/10.2307/2258617
  • 45. Tomar R.S., Jajoo A. 2014. Fluoranthene, a polycyclic aromatic hydrocarbon, inhibits light as well as dark reaction of photosynthesis in wheat (Triticum aestivum). Ecotoxicological and Environmental Safety, 109, 110–115. https://doi.org/10.1016/j.ecoenv.2014.08.009
  • 46. Váňová L., Kummerová M., Votrubová O. 2011. Fluoranthene-induced production of ethylene and formation of lysigenous intercellular spaces in pea plants cultivated in vitro. Acta Physiologiae Plantarum, 33(3), 1037–1042. https://doi.org/10.1007/s11738-010-0618-3
  • 47. Weber E., Bleiholder H. 1990. Erläuterungen zu den BBCH-Dezimal-Codes für die Entwicklungsstadien von Mais, Raps, Faba-Bohne, Sonnenblume und Erbse - mit Abbildungen. Gesunde Pflanzen, 42, 308-321 In: Meier U (ed) 2001. Growth stages of mono-and dicotyledonous plants: BBCH Monograph, Federal Biological Research Centre for Agriculture and Forestry, Germany.
  • 48. Wei H., Song S., Tian H., Liu T. 2014. Effects of phenanthrene on seed germination and some physiological activities of wheat seedlings. Comptes Rendus Biologies, 337, 95–100. https://doi.org/10.1016/j.crvi.2013.11.005
  • 49. Wild E., Dent J., Thomas G.O., Jones K.C. 2006. Visualizing the air-to-leaf transfer and within leaf movement and distribution of phenanthrene: Further studies utilizing two-photon excitation microscopy. Environmental Science and Technology, 40(3), 907–916. https://doi.org/10.1021/es0515046
  • 50. Zezulka Š., Kummerová M., Babula P., Váňová L. 2013. Lemna minor exposed to fluoranthene: Growth, biochemical, physiological and histochemical changes. Aquatic Toxicology, 140–141, 37–47. https://doi.org/10.1016/j.aquatox.2013.05.011
  • 51. Zhan X., Liang X., Xu G., Zhou L. 2013. Influence of plant root morphology and tissue composition on phenanthrene uptake: Stepwise multiple linear regression analysis. Environmental Pollution, 179, 294–300. https://doi.org/10.1016/j.envpol.2013.04.033
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc96d2dc-3228-4ce0-a0be-8a1a3d12c04d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.