Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study reports on research results in the field of a mixing process under the action of a transverse rotating magnetic field (TRMF). The main objective of this paper is to present the effect of this type of a magnetic field on residence time distribution (RTD) measurements. This paper evaluates the performance of a magnetic mixer by comparing the results of an experimental investigations in a pilot set-up and theoretical values obtained from mathematical model. This model consisting of the set of ideal continuous stirred tank reactors (CSTR) fitted well the experimental data.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
53--60
Opis fizyczny
Bibliogr. 25 poz., rys., wykr., tab.
Twórcy
autor
- West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineering and Environmental Protection Process, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineering and Environmental Protection Process, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineering and Environmental Protection Process, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineering and Environmental Protection Process, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineering and Environmental Protection Process, al. Piastów 42, 71-065 Szczecin, Poland
Bibliografia
- 1. Adeosun, J. & Lawal, A. (2009). Numerical and experimental studies of mixing characteristics in a T-junction microchannel using residence time distribution. Chemical EngineeringScience, 64, 2422-2432. DOI: 10.1016/j.ces.2009.02.013.
- 2. Christensen, D., Nijenhuis, J., van Ommen, J. & Coppens, M.-O. (2008). Residence times in fluidized beds with secondary gas injection. Powder Technology, 180, 321-331. DOI: 10.1016/j.powtec.2007.02.021.
- 3. Gao, Y., Vanarase, A., Muzzio, F. & Ierapetritou, M. (2011). Characterizing continuous powder mixing using residence time distribution. Chemical Engineering Science, 66, 417-425. DOI: 10.1016/j.ces.2010.10.045.
- 4. García-Sera, J., García-Verdugo, E., Hyde, J.R., Fraga- -Dubreuil, J., Yan, C., Poliakoff, M. & Cocero, M.J. (2007). Modelling residence time distribution in chemical reactors: A novel generalised n-laminar model. Application to supercritical CO2 and subcritical water tubular reactors. TheJournal of Supercritical Fluids, 41, 82-91. DOI: 10.1016/j. supflu.2006.08.016.
- 5. Guo, Q., Liang, Q., Ni, J., Xu, S., Yu, G. & Yu, Z. (2008). Markov chain model of residence time distribution in a new type entrained-flow gasifier. Chemical Engineeringand Processing, 47, 2061-2065. DOI: 10.1016/j.cep.2007.10.017.
- 6. Harris, A., Thorpe, R. & Davidson, J. (2002). Stochastic modelling of the particle residence time distribution in circulating fluidised bed risers. Chemical Engineering Science, 57, 4779-4796. DOI: 10.1016/S0009-2509(02)00278-6.
- 7. Hornung, Ch. & Mackley, M. (2009). The measurements and characterisation of residence time distribution for laminar liquid flow in plastic microcapillary arrays. Chemical EngineeringScience, 64, 3889-3902. DOI: 10.1016/j.ces.2009.05.033.
- 8. Madhurabthakam, Ch., Pan, Q. & Rempel, G. (2009). Residence time distribution and liquid holdup in kenics KMX static mixer with hydrogenated nitrile butadiene rubber solution and hydrogen gas system. Chemical Engineering Science, 64, 3320-3328. DOI: 10.1016/j.ces.2009.04.001.
- 9. Melo, P.A., Carlos Pinto, J. & Biscaia Jr., E. (2001). Characterization of the residence time distribution in loop reactors. Chemical Engineering Science, 56, 2703-2713. DOI: 10.1016/S0009-2509(00)00517-0.
- 10. Mizonov, V., Berthiaux, H., Gatumel, C., Barantseva, E. & Khokhlova, Y. (2009). Influence of crosswise non-homogeneity of particulate flow on residence time distribution in a continuous mixer. Powder Technology, 190, 6-9. DOI: 10.1016/j.powtec.2008.04.052.
- 11. Nikitine, C., Rodier, E., Sauceau, M. & Fages, J. (2009). Residence time distribution of a pharmaceutical grade polymer melt in a single screw extrusion process. ChemicalEngineering Research and Design, 87, 809-816. DOI: 10.1016/j. cherd.2008.10.008.
- 12. Pröll, T., Todinca, T., Şuta, M. & Friedl, A. (2007). Acid gas absorption in trickle flow columns - Modelling of the residence time distribution of a pilot plant. Chemical Engineeringand Processing, 46, 262-270. DOI: 10.1016/j.cep.2006.06.006.
- 13. Zhang, T., Wang, T. & Wang, J. (2005). Mathematical modelling of the residence time distribution in loop reactors. Chemical Engineering and Processing, 44, 1221-1227. DOI: 10.1016/j.cep.2005.05.001.
- 14. Buso, A., Giomo, M., Boaretto, L. & Paratella, A. (1997). New electrochemical reactor for wastewater treatment: mathematical model. Chemical Engineering and Processing, 36, 411-418. DOI: 10.1016/S0255-2701(97)00008-1.
- 15. Cocero, M.J. & Garcia, J. (2001). Mathematical model of supercritical extraction applied to oil seed extraction by CO2 + saturated alcohol - II. Shortcut methods. Journalof Supercritical Fluids, 20, 245-255. DOI: 10.1016/S0896-8446(01)00069-9.
- 16. Yianatos, J.B., Bergh, L.G., Díaz, F. & Rodríguez, J. (2005). Mixing characteristics of industrial flotation equipment. Chemical Engineering Science, 60, 2273-2282. DOI:10.1016/j. ces.2004.10.039.
- 17. Znad, H., Báleš, V. & Kawase, Y. (2004). Modeling and scule up of airlift bioreactor. Computers and ChemicalEngineering, 28, 2765-2777. DOI: 10.1016/j.compchemeng. 2004.08.024.
- 18. Levenspiel, O. (1962). Chemical Reactor Engineering, Wiley, New York.
- 19. Masiuk, S. & Rakoczy, R. (2006). The entropy criterion for the homogenization process in a multi-ribbon blender. Chemical Engineering and Processing, 45, 500-506. DOI: 10.1016/j.cep.2005.11.008.
- 20. Masiuk, S. & Rakoczy, R. (2007). Power consumption, mixing time, heat and mass transfer measurements for liquid vessel that are mixed using reciprocating multiplates agitator. Chemical Engineering and Processing, 46, 89-98. DOI: 10.1016/j.cep.2006.05.002.
- 21. Rakoczy, R., Masiuk, S., Kordas, M. & Grądzik, P. (2011). The effects of power characteristics on the heat transfer process in various types of motionless mixing devices. Chemical Engineering and Processing. Process Intensification, 50, 959-969. DOI:10.1016/j.cep.2011.07.001.
- 22. Rakoczy, R. & Masiuk, S. (2011). Studies of a mixing process induced by a transverse rotating magnetic field. Chemical Engineering Science, 66, 2298-2308. DOI: 10.1016/j. ces.2011.02.021.
- 23. Hristov, J. (2009). Magnetic field assisted fluidization - a unified approach. Part 7. Mass transfer: Chemical reactors, basic studies and practical implementations thereof. Review in Chemical Engineering, 25, 1-254. DOI: 10.1515/ REVCE.2009.25.1-2-3.1.
- 24. Rakoczy, R. & Masiuk, S. (2009). Experimental study of bubble size distribution in a liquid column exposed to a rotating magnetic field. Chemical Engineering and Processing. Process Intensification, 48, 1229-1240. DOI: 10.1016/j. cep.2009.05.001.
- 25. Claudel, S., Fonteix, C., Leclerc, J.P. & Lintz, H.G. (2003). Application of the possibility theory to the compartment modelling of flow pattern in industrial processes. Chemical Engineering Science, 58, 4005-4016. DOI: 10.1016/ S0009-2509(03)00269-0.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc949125-74ce-432c-a128-5f3dc35f8d48