PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental study and mathematical modeling of the residence time distribution in magnetic mixer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study reports on research results in the field of a mixing process under the action of a transverse rotating magnetic field (TRMF). The main objective of this paper is to present the effect of this type of a magnetic field on residence time distribution (RTD) measurements. This paper evaluates the performance of a magnetic mixer by comparing the results of an experimental investigations in a pilot set-up and theoretical values obtained from mathematical model. This model consisting of the set of ideal continuous stirred tank reactors (CSTR) fitted well the experimental data.
Rocznik
Strony
53--60
Opis fizyczny
Bibliogr. 25 poz., rys., wykr., tab.
Twórcy
autor
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineering and Environmental Protection Process, al. Piastów 42, 71-065 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineering and Environmental Protection Process, al. Piastów 42, 71-065 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineering and Environmental Protection Process, al. Piastów 42, 71-065 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineering and Environmental Protection Process, al. Piastów 42, 71-065 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineering and Environmental Protection Process, al. Piastów 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. Adeosun, J. & Lawal, A. (2009). Numerical and experimental studies of mixing characteristics in a T-junction microchannel using residence time distribution. Chemical EngineeringScience, 64, 2422-2432. DOI: 10.1016/j.ces.2009.02.013.
  • 2. Christensen, D., Nijenhuis, J., van Ommen, J. & Coppens, M.-O. (2008). Residence times in fluidized beds with secondary gas injection. Powder Technology, 180, 321-331. DOI: 10.1016/j.powtec.2007.02.021.
  • 3. Gao, Y., Vanarase, A., Muzzio, F. & Ierapetritou, M. (2011). Characterizing continuous powder mixing using residence time distribution. Chemical Engineering Science, 66, 417-425. DOI: 10.1016/j.ces.2010.10.045.
  • 4. García-Sera, J., García-Verdugo, E., Hyde, J.R., Fraga- -Dubreuil, J., Yan, C., Poliakoff, M. & Cocero, M.J. (2007). Modelling residence time distribution in chemical reactors: A novel generalised n-laminar model. Application to supercritical CO2 and subcritical water tubular reactors. TheJournal of Supercritical Fluids, 41, 82-91. DOI: 10.1016/j. supflu.2006.08.016.
  • 5. Guo, Q., Liang, Q., Ni, J., Xu, S., Yu, G. & Yu, Z. (2008). Markov chain model of residence time distribution in a new type entrained-flow gasifier. Chemical Engineeringand Processing, 47, 2061-2065. DOI: 10.1016/j.cep.2007.10.017.
  • 6. Harris, A., Thorpe, R. & Davidson, J. (2002). Stochastic modelling of the particle residence time distribution in circulating fluidised bed risers. Chemical Engineering Science, 57, 4779-4796. DOI: 10.1016/S0009-2509(02)00278-6.
  • 7. Hornung, Ch. & Mackley, M. (2009). The measurements and characterisation of residence time distribution for laminar liquid flow in plastic microcapillary arrays. Chemical EngineeringScience, 64, 3889-3902. DOI: 10.1016/j.ces.2009.05.033.
  • 8. Madhurabthakam, Ch., Pan, Q. & Rempel, G. (2009). Residence time distribution and liquid holdup in kenics KMX static mixer with hydrogenated nitrile butadiene rubber solution and hydrogen gas system. Chemical Engineering Science, 64, 3320-3328. DOI: 10.1016/j.ces.2009.04.001.
  • 9. Melo, P.A., Carlos Pinto, J. & Biscaia Jr., E. (2001). Characterization of the residence time distribution in loop reactors. Chemical Engineering Science, 56, 2703-2713. DOI: 10.1016/S0009-2509(00)00517-0.
  • 10. Mizonov, V., Berthiaux, H., Gatumel, C., Barantseva, E. & Khokhlova, Y. (2009). Influence of crosswise non-homogeneity of particulate flow on residence time distribution in a continuous mixer. Powder Technology, 190, 6-9. DOI: 10.1016/j.powtec.2008.04.052.
  • 11. Nikitine, C., Rodier, E., Sauceau, M. & Fages, J. (2009). Residence time distribution of a pharmaceutical grade polymer melt in a single screw extrusion process. ChemicalEngineering Research and Design, 87, 809-816. DOI: 10.1016/j. cherd.2008.10.008.
  • 12. Pröll, T., Todinca, T., Şuta, M. & Friedl, A. (2007). Acid gas absorption in trickle flow columns - Modelling of the residence time distribution of a pilot plant. Chemical Engineeringand Processing, 46, 262-270. DOI: 10.1016/j.cep.2006.06.006.
  • 13. Zhang, T., Wang, T. & Wang, J. (2005). Mathematical modelling of the residence time distribution in loop reactors. Chemical Engineering and Processing, 44, 1221-1227. DOI: 10.1016/j.cep.2005.05.001.
  • 14. Buso, A., Giomo, M., Boaretto, L. & Paratella, A. (1997). New electrochemical reactor for wastewater treatment: mathematical model. Chemical Engineering and Processing, 36, 411-418. DOI: 10.1016/S0255-2701(97)00008-1.
  • 15. Cocero, M.J. & Garcia, J. (2001). Mathematical model of supercritical extraction applied to oil seed extraction by CO2 + saturated alcohol - II. Shortcut methods. Journalof Supercritical Fluids, 20, 245-255. DOI: 10.1016/S0896-8446(01)00069-9.
  • 16. Yianatos, J.B., Bergh, L.G., Díaz, F. & Rodríguez, J. (2005). Mixing characteristics of industrial flotation equipment. Chemical Engineering Science, 60, 2273-2282. DOI:10.1016/j. ces.2004.10.039.
  • 17. Znad, H., Báleš, V. & Kawase, Y. (2004). Modeling and scule up of airlift bioreactor. Computers and ChemicalEngineering, 28, 2765-2777. DOI: 10.1016/j.compchemeng. 2004.08.024.
  • 18. Levenspiel, O. (1962). Chemical Reactor Engineering, Wiley, New York.
  • 19. Masiuk, S. & Rakoczy, R. (2006). The entropy criterion for the homogenization process in a multi-ribbon blender. Chemical Engineering and Processing, 45, 500-506. DOI: 10.1016/j.cep.2005.11.008.
  • 20. Masiuk, S. & Rakoczy, R. (2007). Power consumption, mixing time, heat and mass transfer measurements for liquid vessel that are mixed using reciprocating multiplates agitator. Chemical Engineering and Processing, 46, 89-98. DOI: 10.1016/j.cep.2006.05.002.
  • 21. Rakoczy, R., Masiuk, S., Kordas, M. & Grądzik, P. (2011). The effects of power characteristics on the heat transfer process in various types of motionless mixing devices. Chemical Engineering and Processing. Process Intensification, 50, 959-969. DOI:10.1016/j.cep.2011.07.001.
  • 22. Rakoczy, R. & Masiuk, S. (2011). Studies of a mixing process induced by a transverse rotating magnetic field. Chemical Engineering Science, 66, 2298-2308. DOI: 10.1016/j. ces.2011.02.021.
  • 23. Hristov, J. (2009). Magnetic field assisted fluidization - a unified approach. Part 7. Mass transfer: Chemical reactors, basic studies and practical implementations thereof. Review in Chemical Engineering, 25, 1-254. DOI: 10.1515/ REVCE.2009.25.1-2-3.1.
  • 24. Rakoczy, R. & Masiuk, S. (2009). Experimental study of bubble size distribution in a liquid column exposed to a rotating magnetic field. Chemical Engineering and Processing. Process Intensification, 48, 1229-1240. DOI: 10.1016/j. cep.2009.05.001.
  • 25. Claudel, S., Fonteix, C., Leclerc, J.P. & Lintz, H.G. (2003). Application of the possibility theory to the compartment modelling of flow pattern in industrial processes. Chemical Engineering Science, 58, 4005-4016. DOI: 10.1016/ S0009-2509(03)00269-0.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc949125-74ce-432c-a128-5f3dc35f8d48
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.