PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Circular Radon Transform Inversion Technique in Synthetic Aperture Ultrasound Imaging : an Ultrasound Phantom Evaluation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an overview of theoretical aspects of ultrasound image reconstruction techniques based on the circular Radon transform inversion. Their potential application in ultrasonography in a similar way as it was successfully done in the x-ray computer tomography is demonstrated. The meth- ods employing Radon transform were previously extensively explored in the synthetic aperture radars, geophysics, and medical imaging using x-ray computer tomography. In this paper the main attention is paid to the ultrasound imaging employing monostatic transmit-receive configuration. Specifically, a single transmit and receive omnidirectional source placed at the same spatial location is used for generation of a wide-band ultrasound pulse and detection of back-scattered waves. The paper presents derivation of the closed-form solution of the CRT inversion algorithms by two different approaches: the range-migration algorithm (RMA) and the deconvolution algorithm (DA). Experimentally determined data of ultrasound phantom obtained using a 32-element 5 MHz linear transducer array with 0.48 mm element pitch and 0.36 mm element width and 5 mm height, excited by a 2 sine cycles burst pulse are used for comparison of images reconstructed by the RMA, DA, and conventional synthetic aperture focusing technique (SAFT). It is demonstrated that both the RMA and SAFT allow better lateral resolution and visualization depth to be achieved as compared to the DA approach. Comparison of the results obtained by the RMA method and the SAFT indicates slight improvement of the lateral resolution for the SAFT of approximately 1.5 and 1.6% at the depth of 12 and 32 mm, respectively. Concurrently, however, the visualization depth increase for the RMA is shown in comparison with the SAFT. Specifically, the scattered echo amplitude increase by the factor of 1.36 and 1.12 at the depth of 22 and 32 mm is demonstrated. It is also shown that the RMA runs about 30% faster than the SAFT and about 12% faster than the DA method.
Rocznik
Strony
569--582
Opis fizyczny
Bibliogr. 34 poz., rys., wykr.
Twórcy
  • Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B, 02-106 Warszawa, Poland
autor
  • Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B, 02-106 Warszawa, Poland
Bibliografia
  • 1. AGRANOVSKY M.L., QUINTO E.T. (1996), Injectivity sets for the Radon transform over circles and complete systems of radial functions, J. Funct. Anal., 139, 383- 413.
  • 2. CAFFORIO C., PRATI C., ROCCA F. (1991), SAR data focusing using seismic migration techniques, IEEE Trans. Aerosp. Electron. Syst., 27, 194—207.
  • 3. COOLEY C., ROBINSON B. (1994), Synthetic focus imaging using partial datasets, Proc. 1994 IEEE Ultrason. Symp., 3, 1539-1542.
  • 4. CORL P.D., GRANT P.M., KINO G. (1978), A Digital Synthetic Focus Acoustic Imaging System for NDE, Proc. 1978 IEEE Ultrason. Symp., 263-268.
  • 5. CORMACK A.M. (1963), Representation of a function by its line integrals, with some radiological applications, J. Appl. Phys., 34, 9, 2722-2727.
  • 6. CORMACK A.M. (1964), Representation of a function by its line integrals, with some radiological applications. II, J. Appl. Phys., 35, 10, 2908-2913.
  • 7. DANICKI E., TASINKEVYCH Y. (2012), Acoustical Imaging, vol. 31, Chap. Beam-forming electrostrictive matrix, Springer, 363-369.
  • 8. EHRENPREIS L. (2003), The Universality of the Radon Transform, Chap. 1.7, Clarendon Press Oxford, 87.
  • 9. GEL’FAND I.M., SHILOV G.E. (1964), Generalized Functions, Chap. Ill, New York: Academic Press, 329.
  • 10. KARAMAN M., Li P.C., O’Donnell M. (1995), Synthetic aperture imaging for small scale systems, IEEE Trans. Ultrason., Ferroelectr. Freq. Contr., 42, 3, 429- 442.
  • 11. LEBEDEV N.N. (1957a), Special Functions and Their application (in Polish), Chap. V, PWN Warsaw, 126.
  • 12. LEBEDEV N.N. (1957b), Special Functions and Their application (in Polish), Chap. V, PWN Warsaw, 130.
  • 13. LOCKWOOD G.R., TALMAN J.R., BRUNKE S.S. (1998), Real-time 3-D ultrasound imaging using sparse synthetic aperture beamforming, IEEE Trans. Ultrason., Ferroelectr. Freq. Contr., 45, 4, 980-988.
  • 14. MlLMAN A.S. (1993), SAR imaging by ω—k migration, Int. J. Remote Sens., 14, 10, 1965-1979.
  • 15. MOON S. (2014), On the determination of a function from an elliptical Radon transform, Journal of Mathematical Analysis and Applications, 416, 2, 724-734.
  • 16. MOREIRA A. (1992), Real-time synthetic aperture radar (SAR) processing with a new subaperture approach, IEEE Trans. Geosci. Remote Sens., 30, 4, 714-722.
  • 17. NAGAI K. (1985), A New Synthetic-Aperture Focusing Method for Ultrasonic B-Scan Imaging by the Fourier Transform, IEEE Trans. Sonics Ultrason., 32, 4, 531- 536.
  • 18. NIKOLOV S., GAMMELMARK K., Jensen J. (1999), Recursive ultrasound imaging, Proc. 1999 IEEE Ultrason. Symp., vol. 2, 1621-1625.
  • 19. NORTON S.J. (1980), Reconstruction of a reflectivity field from line integrals over circular paths, J. Acoust. Soc. Am., 67, 3, 853-863.
  • 20. O’DONNELL M., THOMAS L.J. (1992), Efficient synthetic aperture imaging from a circular aperture with possible application to catheter-based imaging, IEEE Trans. Ultrason., Ferroelectr. Freq. Contr., 36, 3, 366- 380.
  • 21. OPIELINSKI K.J., GUDRA T. (2001), Industrial and Biological Tomography - Theoretical Basis and Applications, Chap. Ultrasonic transmission tomography, Electrotechnical Institute, Warsaw, 275-276.
  • 22. OZAKI Y., SlJMITANI H., TOMODA T., TANAKA M. (1988), A new system for real-time synthetic aperture ultrasonic imaging, IEEE Trans. Ultrason., Ferroelectr. Freq. Contr., 35, 6, 828-838.
  • 23. PERRY R.M., MARTINSON L.W. (1978), Radar Technology, Chap. Radar matched filtering, Artech House, Boston, 163-169.
  • 24. PHANTOM (525), http://www.fantom.dk/525.htm.
  • 25. REDDING N.J., NEWSAM G.N. (2001), Inverting the Circular Radon Transform, DTSO Research Raport DTSO-RR-0211.
  • 26. SELFRIDGE A.R., KINO G.S., KHURIYAKUB B.T. (1980), A theory for the radiation pattern of a narrow- strip acoustic transducer, Appl. Phys. Lett., 37, 1, 35- 36.
  • 27. STERGIOPOULOS S., SULLIVAN E.J. (1989), Extended towed array processing by an overlap correlator, J. Acoust. Soc. Am., 86, 1, 158-171.
  • 28. STOLT R.H. (1978), Migration by Fourier transform,, Geophysics, 43, 23-48.
  • 29. TASINKEVYCH Y. (2010), Wave generation by a finite baffle array in applications to beam-forming analysis, Archives of Acoustics, 35, 4, 677-686.
  • 30. TASINKEVYCH Y., DANICKI E.J. (2011), Wave generation and scattering by periodic baffle system in application to beam-forming analysis, Wave Motion, 48, 2, 130-145.
  • 31. TASINKEVYCH Y., KLIMONDA Z., LEWANDOWSKI M., NOWICKI A., LEWIN P.A. (2013), Modified multielement synthetic transmit aperture method for ultrasound imaging: A tissue phantom study, Ultrasonics, 53, 570-579.
  • 32. TASINKEVYCH Y., TROTS I., NOWICKI A., LEWIN P.A. (2012), Modified, synthetic transmit aperture algorithm for ultrasound, imaging, Ultrasonics, 52, 2, 333-342.
  • 33. THOMSON R.N. (1984), Transverse and longitudinal resolution, of the synthetic aperture focusing technique, Ultrasonics, 22, 1, 9-15.
  • 34. YEN N.C., CAREY W. (1989), Application of synthetic aperture processing to towed-array data, J. Acoust. Soc. Am.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc9402a0-e316-40d5-bc14-802bf8602f58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.