PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aerosol collector addition in flotation - evaluation of delivery options

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In conventional flotation systems, the collector is adsorbed onto mineral particles from the aqueous phase at the solid/liquid interface. Aerosol collector addition is a concept whereby collector molecules are introduced to mineral surfaces via the surfaces of bubbles or the solid/gas interface. Several studies have demonstrated this concept, ranging from the analysis of ideal mineral surfaces to laboratory-scale flotation of complex water systems. However, the physical addition of a collector to the surfaces of bubbles is not a common process and has no uniform methodology. If aerosol collector addition is to be studied as a viable reagent addition technique, it becomes necessary to develop and test appropriate methods that could be replicated across several different studies. This work examines two aerosol addition methods: a conventional Venturi-style gas liquid nozzle, as well as a purpose-built atomiser developed for use in pharmacological applications. Both were compared to a standard “upfront conditioning” batch dosage method and were found to be safe, simple to use and produced comparable flotation outcomes.
Słowa kluczowe
Rocznik
Strony
art. no. 174475
Opis fizyczny
Bibliogr. 15 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Julius Kruttschnitt Mineral Research Centre, University of Queensland, Indooroopilly, Australia
  • ARC Centre of Excellence on Eco-Efficient Beneficiation of Minerals (CE200100009), University of Newcastle, Callaghan, Australia
  • Julius Kruttschnitt Mineral Research Centre, University of Queensland, Indooroopilly, Australia
  • ARC Centre of Excellence on Eco-Efficient Beneficiation of Minerals (CE200100009), University of Newcastle, Callaghan, Australia
  • Julius Kruttschnitt Mineral Research Centre, University of Queensland, Indooroopilly, Australia
  • ARC Centre of Excellence on Eco-Efficient Beneficiation of Minerals (CE200100009), University of Newcastle, Callaghan, Australia
Bibliografia
  • BRILL, C., VERSTER, I., FRANKS, G. V. & FORBES, L. 2022. Aerosol Collector Addition in Coarse Particle Flotation – A Review. Mineral Processing and Extractive Metallurgy Review, 1-10.
  • BURDUKOVA, E. & LASKOWSKI, J. S. 2009. Effect of Insoluble Amine on Bubble Surfaces on Particle-Bubble Attachment in Potash Flotation. Canadian Journal of Chemical Engineering, 89, 441 - 447.
  • CHEN, J., CHIMONYO, W. & PENG, Y. 2022. Flotation behaviour in reflux flotation cell – A critical review. Minerals Engineering, 181, 107519.
  • HAN, Y., WANG, X., ZHU, J. & WANG, P. 2022. Gas Dispersion Characteristics in a Novel Jet-Stirring Coupling Flotation Device. ACS Omega, 7, 9061-9070.
  • HARBORT, G., DE BONO, S., CARR, D. & LAWSON, V. 2003. Jameson Cell fundamentals––a revised perspective. Minerals Engineering, 16, 1091-1101.
  • JAMESON, G. J. 2010. New directions in flotation machine design. Minerals engineering, 23, 835-841.
  • KLASSEN, V. I. & MAKROUSOV, V. A. 1963. Introduction to the theory of flotation, London, Butterworth.
  • KOHMUENCH, J., WASMUND, E., SEAMAN, B. & VOLLERT, L. 2018. HydroFloats Running at Cadia: Engineering, Geology, Mineralogy, Metallurgy, Chemistry, etc. Engineering and Mining Journal, 219, 53.
  • LASKOWSKI, J. S. 2007. Flotation thermodynamics: Can we learn anything from it? Canadian Metallurgical Quarterly, 46, 251 - 258.
  • MISRA, M. & ANAZIA, I. 1987. Ultrafine coal flotation by gas phase transport of atomized reagents. Mineral & Metallurgical Processing, 4, 233 - 236.
  • NOTT, M. C. & MANLAPIG, E. V. 1994. The effect of a flotation enhancement device on sulphide mineral flotation. In: CASTRO, S. & ALVAREZ, J. (eds.) Flotation, In Memory of Alexander Sutulov. Concepcion, Chile: University of Concepcion.
  • PATIL, D. P. & LASKOWSKI, J. S. 2007. Development of zero conditioning procedure for coal reverse flotation. Minerals Engineering, 21, 373 - 379.
  • SCHREITHOFER, N. & LASKOWSKI, J. S. 2007. Investigation of KCl crystal/NaCl-KCl saturated brine interface and octadecylamine deposition with the use of AFM. Canadian Metallurgical Quarterly, 46, 285 - 294.
  • VALENTA, R. K., LÈBRE, É., ANTONIO, C., FRANKS, D. M., JOKOVIC, V., MICKLETHWAITE, S., PARBHAKARFOX, A., RUNGE, K., SAVINOVA, E., SEGURA-SALAZAR, J., STRINGER, M., VERSTER, I. & YAHYAEI, M. 2023. Decarbonisation to drive dramatic increase in mining waste–Options for reduction. Resources, Conservation and Recycling, 190, 106859.
  • WITT, P. 2022. Multiphase CFD in minerals & metal processing - Guest Blog by CSIRO. Leap Australia [Online]. Available from: https://www.computationalfluiddynamics.com.au/guest-blog-by-csiro-multiphase-cfd-inminerals-metal-processing/ [Accessed 27th September 2022].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc93a7ca-c7fb-48ee-adde-4b73b257952f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.