PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simultaneous removal of phenol and Cu(II) from wastewater by tallow dihydroxyethyl betaine modified bentonite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An organobentonite modified with an amphoteric surfactant, tallow dihydroxyethyl betaine (TDHEB), was used as an adsorbent to simultaneously remove Cu(II) and phenol from wastewater. The characteristic of the organobentonite (named TDHEB-bentonite) was analyzed by X-ray diffraction, Fourier-transform infrared spectra and nitrogen adsorption-desorption isotherm. Batch tests were conducted to evaluate the adsorption capacities of TDHEB-bentonite for the two contaminants. Experiment results demonstrated that the adsorption of both contaminants is highly pH-dependent under acidic conditions. TDHEB-bentonite had about 2.0 and 5.0 times higher adsorption capacity toward Cu(II) and phenol, respectively, relative to the corresponding raw Na-bentonite. Adsorption isotherm data showed that the adsorption processes of both contaminants were well described by Freundlich model. Kinetic experiment demonstrated that both contaminants adsorption processes correlated well with pseudo-second-order model. Cu(II) had a negative impact on phenol adsorption, but not vice versa. Cu(II) was removed mainly through chelating with the organic groups (-CH2CH2OH and -COO-) of TDHEB. Otherwise, partition into the organic phase derived from the adsorbed surfactant was the primarily mechanism for phenol removal. Overall, TDHEB-bentonite was a promising adsorbent for removing Cu(II) and phenol simultaneously from wastewater.
Rocznik
Strony
37--47
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
autor
  • PowerChina Northwest Engineering Corporation Limited, China
autor
  •  Xi’an University of Architecture and Technology, China
  •  PowerChina Northwest Engineering Corporation Limited, China
autor
  •  Xi’an University of Architecture and Technology, China
Bibliografia
  • 1. Andronico, M. & Bajda, T. (2019). Modification of Bentonite with Cationic and Nonionic Surfactants: Structural and Textural Features. Materials, 12(22), 3772, DOI: 10.3390/ma12223772
  • 2. Banat, F.A., Al-Bashir, B., Al-Asheh, S. & Hayajneh, O. (2000). Adsorption of phenol by bentonite. Environmental Pollution, 107(3), pp. 391–398, DOI: 10.1016/S0269-7491(99)00173-6
  • 3. Bhattacharyya, K.G. & Gupta, S.S. (2008). Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Advances in Colloid and Interface Science, 140(2), pp. 114–131, DOI: 10.1016/j.cis.2007.12.008
  • 4. Cao, L., Li, Z., Xiang, S., Huang, Z., Ruan, R. & Liu, Y. (2019). Preparation and characteristics of bentonite–zeolite adsorbent and its application in swine wastewater. Bioresource Technology, 284, pp. 448–455, DOI: 10.1016/j.biortech.2019.03.043
  • 5. Chen, H., Zhou, W., Zhu, K., Zhan, H. & Jiang, M. (2004). Sorption of ionizable organic compounds on HDTMA-modified loess soil. Science of The Total Environment, 326(1), pp. 217–223, DOI: 10.1016/j.scitotenv.2003.12.011
  • 6. Chen, Y., Zhang, X., Wang, L., Cheng, X. & Shang, Q. (2020). Rapid removal of phenol/antibiotics in water by Fe-(8-hydroxyquinoline-7-carboxylic)/TiO2 flower composite: Adsorption combined with photocatalysis. Chemical Engineering Journal, 402, 126260, DOI: 10.1016/j.cej.2020.126260
  • 7. Chu, Y., Khan, M.A., Xia, M., Lei, W., Wang, F., Zhu, S. & Yan, X. (2020). Synthesis and micro-mechanistic studies of histidine modified montmorillonite for lead(II) and copper(II) adsorption from wastewater. Chemical Engineering Research and Design, 157, pp. 142–152, DOI: 10.1016/j.cherd.2020.02.020
  • 8. Díaz-Nava, M.C., Olguín, M.T. & Solache-Ríos, M. (2012). Adsorption of phenol onto surfactants modified bentonite. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 74(1), 67–75, DOI: 10.1007/s10847-011-0084-6
  • 9. Fan, H., Zhou, L., Jiang, X., Huang, Q. & Lang, W. (2014). Adsorption of Cu2+ and methylene blue on dodecyl sulfobetaine surfactant-modified montmorillonite. Applied Clay Science, 95, pp. 150–158, DOI: 10.1016/j.clay.2014.04.001
  • 10. Freundlich, H. (1906). Over the adsorption in solution. The Journal of Physical Chemistry A, 57(385471), pp. 1100–1107, DOI: 10.1515/zpch-1907-5723
  • 11. Griffin, R.A. & Shimp, N.F. (1976). Effect of pH on exchange adsorption or precipitation of lead from landfill leachates by clay minerals. Environmental science & technology, 10(13), pp. 1256–1261, DOI: 10.1021/es60123a003
  • 12. He, Y., Chen, Y., Zhang, K., Ye, W. & Wu, D. (2019). Removal of chromium and strontium from aqueous solutions by adsorption on laterite. Archives of Environmental Protection, 45(3), pp. 11–20, DOI: 10.24425/aep.2019.128636
  • 13. Kong, Y., Wang, L., Ge, Y., Su, H. & Li, Z. (2019). Lignin xanthate resin–bentonite clay composite as a highly effective and low- -cost adsorbent for the removal of doxycycline hydrochloride antibiotic and mercury ions in water. Journal of Hazardous Materials, 368, pp. 33–41, DOI: 10.1016/j.jhazmat.2019.01.026
  • 14. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical society, 40(9), pp. 1361–1403, DOI: 10.1021/ja02242a004
  • 15. Lee, C., Lee, S., Park, J., Park, C., Lee, S.J., Kim, S., An, B., Yun, S., Lee, S. & Choi, J. (2017). Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam. Chemosphere, 166, pp. 203–211, DOI: 10.1016/j.chemosphere.2016.09.093
  • 16. Lin, S. & Juang, R. (2002). Heavy metal removal from water by sorption using surfactant-modified montmorillonite. Journal of Hazardous Materials, 92(3), pp. 315–326, DOI: 10.1016/S0304- 3894(02)00026-2
  • 17. Liu, C., Wu, P., Zhu, Y. & Tran, L. (2016). Simultaneous adsorption of Cd2+ and BPA on amphoteric surfactant activated montmorillonite. Chemosphere, 144, pp. 1026–1032, DOI: 10.1016/j.chemosphere.2015.09.063
  • 18. Long, H., Wu, P. & Zhu, N. (2013). Evaluation of Cs+ removal from aqueous solution by adsorption on ethylamine-modified montmorillonite. Chemical Engineering Journal, 225, pp. 237–244, DOI: 10.1016/j.cej.2013.03.088
  • 19. Ma, J. & Zhu, L. (2006). Simultaneous sorption of phosphate and phenanthrene to inorgano-organo-bentonite from water. Journal of Hazardous Materials, 136(3), pp. 982–988, DOI: 10.1016/j.jhazmat.2006.01.046
  • 20. Ma, J. & Zhu, L. (2007). Removal of phenols from water accompanied with synthesis of organobentonite in one-step process. Chemosphere, 68(10), pp. 1883–1888, DOI: 10.1016/j.chemosphere.2007.03.002
  • 21. Ma, L., Chen, Q., Zhu, J., Xi, Y., He, H., Zhu, R., Tao, Q. & Ayoko, G.A. (2016). Adsorption of phenol and Cu(II) onto cationic and zwitterionic surfactant modified montmorillonite in single and binary systems. Chemical Engineering Journal, 283, pp. 880–888, DOI: 10.1016/j.cej.2015.08.009
  • 22. Matthes, W., Madsen, F.T. & Kahr, G. (1999). Sorption of heavy-metal cations by Al and Zr-hydroxy-intercalated and pillared bentonite. Clays and Clay Minerals, 47(5), pp. 617–629, DOI: 10.1346/CCMN.1999.0470508
  • 23. Meng, Z., Zhang, Y. & Zhang, Z. (2008). Simultaneous adsorption of phenol and cadmium on amphoteric modified soil. Journal of Hazardous Materials, 159(2), pp. 492–498, DOI: 10.1016/j.jhazmat.2008.02.045
  • 24. Nourmoradi, H., Nikaeen, M. & Khiadani Hajian, M. (2012). Removal of benzene, toluene, ethylbenzene and xylene (BTEX) from aqueous solutions by montmorillonitemodified with nonionic surfactant: Equilibrium, kinetic and thermodynamic study. Chemical Engineering Journal, 191, pp. 341–348, DOI: 10.1016/j.cej.2012.03.029
  • 25. Pal, A., Jayamani, J. & Prasad, R. (2014). An urgent need to reassess the safe levels of copper in the drinking water: Lessons from studies on healthy animals harboring no genetic deficits. NeuroToxicology, 44, pp. 58–60, DOI: 10.1016/j.neuro.2014.05.005
  • 26. Park, Y., Ayoko, G.A., Horváth, E., Kurdi, R., Kristof, J. & Frost, R.L. (2013). Structural characterisation and environmental application of organoclays for the removal of phenolic compounds. Journal of Colloid and Interface Science, 393, pp. 319–334, DOI: 10.1016/j.jcis.2012.10.067
  • 27. Qu, Y., Qin, L., Liu, X. & Yang, Y. (2020). Reasonable design and sifting of microporous carbon nanosphere-based surface molecularly imprinted polymer for selective removal of phenol from wastewater. Chemosphere, 251, 126376, DOI: 10.1016/j.chemosphere.2020.126376
  • 28. Redlich, O. & Peterson, D.L. (1959). A useful adsorption isotherm. Journal of physical chemistry, 63(6), 1024, DOI: 10.1021/ j150576a611
  • 29. Ren, S., Meng, Z., Sun, X., Lu, H., Zhang, M., Lahori, A. H. & Bu, S. (2020). Comparison of Cd2+ adsorption onto amphoteric, amphoteric-cationic and amphoteric-anionic modified magnetic bentonites. Chemosphere, 239, 124840, DOI: 10.1016/j. chemosphere.2019.124840
  • 30. Senturk, H.B., Ozdes, D., Gundogdu, A., Duran, C. & Soylak, M. (2009). Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: Equilibrium, kinetic and thermodynamic study. Journal of Hazardous Materials, 172(1), pp. 353–362, DOI: 10.1016/j.jhazmat.2009.07.019
  • 31. Taffarel, S.R. & Rubio, J. (2010). Adsorption of sodium dodecyl benzene sulfonate from aqueous solution using a modified natural zeolite with CTAB. Minerals Engineering, 23(10), pp. 771–779, DOI: 10.1016/j.mineng.2010.05.018
  • 32. Tri, N.L.M., Thang, P.Q., Van Tan, L., Huong, P.T., Kim, J., Viet, N.M., Phuong, N.M. & Al Tahtamouni, T.M. (2020). Removal of phenolic compounds from wastewaters by using synthesized Fe-nano zeolite. Journal of Water Process Engineering, 33, 101070, DOI: 10.1016/j.jwpe.2019.101070
  • 33. Veli, S. & Alyüz, B. (2007). Adsorption of copper and zinc from aqueous solutions by using natural clay. Journal of Hazardous Materials, 149(1), pp. 226–233, DOI: 10.1016/j.jhazmat.2007.04.109
  • 34. Wang, G., Wang, X., Zhang, S., Ma, S., Wang, Y. & Qiu, J. (2020). Adsorption of heavy metal and organic pollutant by organo- -montmorillonites in binary-component system. Journal of Porous Materials, 27(5), pp. 1515–1522, DOI: 10.1007/s10934- 020-00927-8
  • 35. Wang, G., Zhang, S., Hua, Y., Su, X., Ma, S., Wang, J., Tao, Q., Wang, Y. & Komarneni, S. (2017). Phenol and/or Zn2+ adsorption by single- or dual-cation organomontmorillonites. Applied Clay Science, 140, pp. 1–9, DOI: 10.1016/j.clay.2017.01.023
  • 36. Yan, L., Shan, X., Wen, B. & Zhang, S. (2007). Effect of lead on the sorption of phenol onto montmorillonites and organo- -montmorillonites. Journal of Colloid and Interface Science, 308(1), pp. 11–19, DOI: 10.1016/j.jcis.2006.12.027
  • 37. Yang, G., Tang, L., Zeng, G., Cai, Y., Tang, J., Pang, Y., Zhou, Y., Liu, Y., Wang, J., Zhang, S. & Xiong, W. (2015). Simultaneous removal of lead and phenol contamination from water by nitrogen-functionalized magnetic ordered mesoporous carbon. Chemical Engineering Journal, 259, pp. 854–864, DOI: 10.1016/j.cej.2014.08.081
  • 38. Yoo, J., Choi, J., Lee, T. & Park, J. (2004). Organobentonite for sorption and degradation of phenol in the presence of heavy metals. Water, Air, and Soil Pollution, 154(1), pp. 225–237, DOI: 10.1023/B:WATE.0000022970.21712.64
  • 39. Yu, K., Xu, J., Jiang, X., Liu, C., McCall, W. & Lu, J. (2017). Stabilization of heavy metals in soil using two organo-bentonites. Chemosphere, 184, pp. 884–891, DOI: 10.1016/j.chemosphere.2017.06.040
  • 40. Zendelska, A., Golomeova, M., Golomeov, B. & Krstev, B. (2018). Removal of lead ions from acid aqueous solutions and acid mine drainage using zeolite bearing tuff. Archives of Environmental Protection, 44(1), pp. 87–96, DOI: 10.24425/118185
  • 41. Zhu, R., Chen, Q., Zhou, Q., Xi, Y., Zhu, J. & He, H. (2016). Adsorbents based on montmorillonite for contaminant removal from water: A review. Applied Clay Science, 123, pp. 239–258, DOI: 10.1016/j.clay.2015.12.024
Uwagi
PL
Opracowane ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc938d2b-959e-435f-bf87-cc5ffaabf3d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.