Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this study is to assess the performance of linear discriminate analysis, support vector machines (SVMs) with linear and radial basis, classification and regression trees and random forest (RF) in the classification of radionuclide data obtained from three different types of rocks. Radionuclide data were obtained for metamorphic, sedimentary and igneous rocks using gamma spectroscopic method. A P-type high-purity germanium detector was used for the radiometric study. For analysis purpose, we have determined activity concentrations of 232Th, 226Ra and 40K radionuclides, published elsewhere (Rafique et al. in Russ Geol Geophys 55:1073–1082, 2014), in different rock samples and built the classification model after pre-processing the data using three times tenfold cross-validation. Using this model, we have classified the new samples into known categories of sedimentary, igneous and metamorphic. The statistics depicts that RF and SVM with radial kernel outperform as compared to other classification methods in terms of error rate, area under the curve and with respect to other performance measures.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1073--1079
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
autor
- Department of Physics University of Azad Jammu and Kashmir Muzaffarabad Pakistan
autor
- .Department of Computer Science and Information Technology The University of Azad Jammu and Kashmir Muzaffarabad Pakistan
autor
- .Department of Computer Science and Information Technology The University of Azad Jammu and Kashmir Muzaffarabad Pakistan
autor
- Department of Physics University of Azad Jammu and Kashmir Muzaffarabad Pakistan
autor
- Centre for Earthquake Studies National Centre for Physics Islamabad Pakistan
autor
autor
- Health Physics Division Pakistan Institute of Nuclear Science and Engineering (PINSTECH) Nilore Pakistan
autor
- .Department of Medical PhysicsNuclear Medicine, Oncology and Radiotherapy Institute Islamabad Pakistan
Bibliografia
- 1. Balakrishnama S, Ganapathiraju A (1998) Linear discriminant analysis—a brief tutorial. Inst Signal Inf Process 18:1–8
- 2. Bosch A, Zisserman A et al (2007) Image classification using random forests and ferns. In: Computer vision, 2007. ICCV 2007 IEEE 11th international conference, IEEE
- 3. Breiman L (2001) Random forests. Mach Learn 45(1):5–32
- 4. Breiman L, Friedman JH et al (1984) Classification and regression trees Belmont. Wadsworth International Group, CA
- 5. Chen Y, Blasch E et al (2008) Experimental feature-based SAR ATR performance evaluation under different operational conditions. In: SPIE defense and security symposium, international society for optics and photonics
- 6. Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory IT-13(1):21–27
- 7. De’ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81(11):3178–3192
- 8. Díaz-Uriarte R, De Andres SA (2006) Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7(1):3
- 9. Doyle P (1973) The use of automatic interaction detector and similar search procedures. J Oper Res 24:465–467
- 10. Dudoit S, Fridlyand J et al (2002) Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 97(457):77–87
- 11. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874
- 12. Haeb-Umbach R, Ney H (1992) Linear discriminant analysis for improved large vocabulary continuous speech recognition. In: 1992 IEEE international conference on acoustics, speech, and signal processing, ICASSP-92. IEEE
- 13. Ham J, Chen Y et al (2005) Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans Geosci Remote Sens 43(3):492–501
- 14. Hanczar BJ, Hua J et al (2009) Decor relation of the true and estimated classifier errors in high-dimensional settings. EURASIP J Bioinf Syst Biol 2007:1–12
- 15. Hsu C-W, Chang C-C et al (2003) A practical guide to support vector classification. Tech. rep., Department of Computer Science, National Taiwan University, Working Paper
- 16. Jabbar A, Khan K, Jabbar T et al (2016) Radioactive contents and background doses from northern alluvial sediment plains between rivers Ravi and Chenab, Pakistan. Nucl Sci Tech 27:94
- 17. Kamber M, Han J et al (2012) Data mining: concepts and techniques. Elsevier, New York
- 18. Kim H, Loh W-Y (2001) Classification trees with unbiased multiway splits. J Am Stat Assoc 96(454):589–604
- 19. Kononenko I, Kukar M (2007) Machine learning and data mining: introduction to principles and algorithms. Horwood Publishing, Sawston
- 20. Lee JW, Lee JB et al (2005) An extensive comparison of recent classification tools applied to microarray data. Comput Stat Data Anal 48(4):869–885
- 21. Loh W-Y, Shih Y-S (1997) Split selection methods for classification trees. Stat Sin 7:815–840
- 22. Luo J, Vong C-M et al (2014) Sparse Bayesian extreme learning machine for multi-classification. IEEE Trans Neural Netw Learn Syst 25(4):836–843
- 23. Lyons MJ, Budynek J et al (1999) Automatic classification of single facial images. IEEE Trans Pattern Anal Mach Intell 21(12):1357–1362
- 24. Michalski RS, Carbonell JG et al (2013) Machine learning: an artificial intelligence approach. Springer, Berlin
- 25. Morgan JN, Sonquist JA (1963) Problems in the analysis of survey data, and a proposal. J Am Stat Assoc 58(302):415–434
- 26. Park C, Park H et al (2005) A relationship between LDA and the generalized minimum squared error solution. J Matrix Anal Appl 27:474–492
- 27. Parsons S (2005) Introduction to machine learning by Ethem Alpaydin, MIT Press, 0-262-01211-1, 400 pp., $50.00/£ 32.95. Cambridge University Press, Cambridge
- 28. Rafique M, Jabbar A, Khan AR, Rahman SU, Bashrat M, Mehmood A, Matiullah (2013) Radiometric analysis of rock and soil samples of Leepa Valley, Azad Kashmir, Pakistan. J Radioanal Nucl Chem 298:2049
- 29. Rafique M, Khan AR, Jabbar A, Rahman SU, Kazmi SJA, Nasir T, Arshed W, Matiullah (2014) Evaluation of radiation dose due to naturally occurring radionuclides in rock samples of different origins collected from Azad Kashmir. Russ Geol Geophys 55:1073–1082
- 30. Rahman SU, Rafique M (2012) 232Th, 226Ra, and 40K activities and associated radiological hazards in building materials of Islamabad capital territory, Pakistan. Nucl Technol Radiat Prot 27(4):392–398
- 31. Rahman SU, Matiullah, Malik F, Rafique M, Anwa J, Ziafat M (2011) Measurement of naturally occurring/fallout radioactive elements and assessment of annual effective dose in soil samples collected from four districts of the Punjab Province, Pakistan. J Radioanal Nucl Chem 287:647–655
- 32. Rahman SU, Rafique M, Jabbar M, Matiullah (2013) Radiological hazards due to naturally occurring radionuclides in the selected building materials used for the construction of dwellings in four districts of the Punjab province, Pakistan. Radiat Prot Dosimetry 153(3):352–360
- 33. Rodriguez-Galiano VF, Ghimire B et al (2012) An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J Photogram Remote Sens 67:93–104
- 34. Tibshirani R, Hastie T et al (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci 99(10):6567–6572
- 35. Timofeev R (2004) Classification and regression trees (CART) theory and applications. Humboldt University, Berlin
- 36. Tuia D, Volpi M et al (2011) A survey of active learning algorithms for supervised remote sensing image classification. IEEE J Sel Top Signal Process 5(3):606–617
- 37. Vapnik VN (1979) Introduction to statistical learning theory. IEEE Trans Neural Networks 10:988–999
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc93897b-6974-4cae-8d1f-f41654556e39