Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Introduction: The purpose of the study was to test a method describing the mechanical properties of bone using clinically available CT data. Material and Methods: The samples, 50 L3 vertebrae taken from males 22 to 81 years old, were examined with dual- energy X-ray absorptiometry and quantitative CT. An analysis of CT images and their image histograms was performed. The greyscale means – XC1, XC2, their standard deviations – SD1, SD2, and the areas under the curves – X1, X2 characterizing the organic matrix and bone material, respectively, were calculated by fitting two Gaussian functions. The compression tests were performed to determine the elastic modulus (E), ultimate stress (σmax), ultimate strain, and the ratio of work to fracture and the volume of the vertebra. Results: It was found that E and σmax were most precisely described by the parameter related to the trabecular bone density (XC2) obtained from the histogram analysis. Using the linear model, the coefficient of determination (R2) equals to 0.706 and 0.846 for E and σmax, respectively. For volumetric (vBMD) and areal bone mineral density (aBMD), R2 is 0.641 and 0.208 for E, while for σmax equals 0.784 and 0.356. After correction of vBMD using the histogram parameters R2 for E and σmax rise to 0.692 and 0.835, respectively. Conclusions: The superiority of the new method of E and σmax estimation based on clinically available CT data was confirmed. The proposed method does not require calibration and predicts the mechanical parameters of the vertebrae more precisely than vBMD or aBMD separately.
Rocznik
Tom
Strony
239--248
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
- Faculty of Medicine, Chair of Physiology, Department of Biophysics, Jagiellonian University Medical College, Kraków, Poland
autor
- Faculty of Medicine, Chair of Physiology, Department of Biophysics, Jagiellonian University Medical College, Kraków, Poland
Bibliografia
- 1. Hernlund E, Svedbom A, Ivergård M, et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos. 2013;8:136. https://doi.org/10.1007/s11657-013-0136-1
- 2. Aibar-Almazán A, Voltes-Martínez A, Castellote-Caballero Y, et al. Current status of the diagnosis and management of osteoporosis. Int J Mol Sci. 2022;23:9465. https://doi.org/10.3390/ijms23169465
- 3. Nethander M, Pettersson-Kymmer U, Vandenput L, et al. BMD-related genetic risk scores predict site-specific fractures as well as trabecular and cortical bone microstructure. J Clin Endocrinol Metab. 2020;105:e1344–e1357. https://doi.org/10.1210/clinem/dgaa082
- 4. Shepherd JA, Schousboe JT, Broy SB, et al. Executive summary of the 2015 ISCD position development conference on advanced measures from DXA and QCT: fracture prediction beyond BMD. J Clin Densitom. 2015;18:274-286. https://doi.org/10.1016/j.jocd.2015.06.013
- 5. Silva BC, Broy SB, Boutroy S, et al. Fracture risk prediction by non-BMD DXA measures: the 2015 ISCD official positions, part 2: trabecular bone score. J Clin Densitom. 2015;18:309-330. https://doi.org/10.1016/j.jocd.2015.06.008
- 6. Adami G, Biffi A, Porcu G, et al. A systematic review on the performance of fracture risk assessment tools: FRAX, DeFRA, FRA-HS. J Endocrinol Invest. 2023;46:2287-2297. https://doi.org/10.1007/s40618-023-02082-8
- 7. Soldati E, Rossi F, Vicente J, et al. Survey of MRI usefulness for the clinical assessment of bone microstructure. Int J Mol Sci. 2021;22:2509. https://doi.org/10.3390/ijms22052509
- 8. Akhter MP, Recker RR. High resolution imaging in bone tissue research-review. Bone. 2021;143:115620. https://doi.org/10.1016/j.bone.2020.115620
- 9. Johannesdottir F, Allaire B, Bouxsein ML. Fracture prediction by computed tomography and finite element analysis: current and future perspectives. Curr Osteoporos Rep. 2018;16:411-422. https://doi.org/10.1007/s11914-018-0450-z. Erratum in: Curr Osteoporos Rep. 2022;20:364. https://doi.org/10.1007/s11914-022-00724-z
- 10. Fleps I, Morgan EF. A Review of CT-based fracture risk assessment with finite element modeling and machine learning. Curr Osteoporos Rep. 2022;20:309-319. https://doi.org/10.1007/s11914-022-00743-w
- 11. Gebre RK, Hirvasniemi J, Lantto I, et al. Discrimination of low-energy acetabular fractures from controls using computed tomography-based bone characteristics. Ann Biomed Eng. 2021;49:367-381. https://doi.org/10.1007/s10439-020-02563-4
- 12. Silva BC, Leslie WD, Resch H et al. Trabecular Bone Score: A noninvasive analytical method based upon the DXA image. J Bone Mineral Res. 2014;29:518-530. https://doi.org/10.1002/jbmr.3218
- 13. López Picazo M, Humbert L, Di Gregorio S, et al. Discrimination of osteoporosis-related vertebral fractures by DXA-derived 3D measurements: a retrospective case-control study. Osteoporosis Int. 2019;30:1099-1110. https://doi.org/10.1007/s00198-019-04894-y
- 14. Xie Q, Chen Y, Hu Y, et al. Development and validation of a machine learning-derived radiomics model for diagnosis of osteoporosis and osteopenia using quantitative computed tomography. BMC Med Imaging. 2022;22:140. https://doi.org/10.1186/s12880-022-00868-5
- 15. Xue Z, Huo J, Sun X, et al. Using radiomic features of lumbar spine CT images to differentiate osteoporosis from normal bone density. BMC Musculoskelet Disord. 2022;23:336. https://doi.org/10:1186/s12891-022-05309-6
- 16. Yan J, Lai Y, Xu Y, et al. Editorial: Artificial intelligence-based medical image automatic diagnosis and prognosis prediction. Front Phys. 2023;11:1210010. https://doi.org/10.3389/fphy.2023.1210010
- 17. Valentinitsch A, Trebeschi S, Kaesmacher J, et al. Opportunistic osteoporosis screening in multi-detector CT images via local classification of textures. Osteoporos Int. 2019;30:1275-1285. https://doi.org/10.1007/s00198-019-04910-1
- 18. Leonhardt Y, May P, Gordijenko O, et al. Opportunistic QCT bone mineral density measurements predicting osteoporotic fractures: a use case in a prospective clinical cohort. Front Endocrinol. 2020;11:586352. https://doi.org/10.3389/fendo.2020.586352
- 19. Löffler MT, Jacob A, Valentinitsch A, et al. Improved prediction of incident vertebral fractures using opportunistic QCT compared to DXA. Eur Radiol. 2019;29:4980-4989. https://doi.org/10.1007/s00330-019-0618-w
- 20. Boutin RD, Hernandez AM, Lenchik L, et al. CT phantom evaluation of 67,392 American College of Radiology accreditation examinations: implications for opportunistic screening of osteoporosis using CT. Am J Roentgenol. 2021;216:447-452. https://doi.org/10.2214/AJR.20.22943
- 21. Lenchik L, Weaver AA, Ward RJ, et al. Opportunistic screening for osteoporosis using computed tomography: State of the art and argument for paradigm shift. Curr Rheumatol Rep. 2018;20:74. https://doi.org/10.1007/s11926-018-0784-7
- 22. Tatoń G, Rokita E, Rok T, et al. Oversampling in the computed tomography measurements applied for bone structure studies as a method of spatial resolution improvement. Pol J Radiol. 2012;77:14-18. https://doi.org/10.12659/pjr.882965
- 23. Tatoń G, Rokita E, Wróbel A. Application of geometrical measurements in the assessment of vertebral strength. Pol J Radiol. 2013;78:15-18. https://doi.org/10.12659/PJR.883942
- 24. Tatoń G, Rokita E, Wróbel et al. Combining areal DXA bone mineral density and vertebrae postero-anterior width improves the prediction of vertebral strength. Skeletal Radiol. 2013;42:1717-1725. https://doi.org/10.1007/s00256-013-1723-3
- 25. Tatoń G, Rokita E, Korkosz et al. The ratio of anterior and posterior vertebral heights reinforces the utility of DXA in assessment of vertebrae strength. Calcif Tissue Int. 2014;95:112-121. https://doi.org/10.1007/s00223-014-9868-1
- 26. Alswat KA. Gender disparities in osteoporosis. J Clin Med Res. 2017;9:382-387. https://doi.org/10.14740/jocmr2970w
- 27. Genant HK, Wu CY, Kuijk C, et al. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res. 1993;8:1137-1148. https://doi.org/10.1002/jbmr.5650080915
- 28. Steiger JH. Tests for comparing elements of a correlation matrix. Psychol Bull. 1980;187:245-251. https://doi.org/10.1037/0033-2909.87.2.245
- 29. Tabor Z, Rokita E. Comparison of trabecular bone architecture in young and old bone. Med Phys. 2000;27:765-772. https://doi.org/10.1118/1.598981
- 30. Kubik T, Pasowicz M, Tabor Z, et al. Optimizing the assessment of age-related changes in trabecular bone. Phys Med Biol. 2002;47:1543-1553. https://doi.org/10.1088/0031-9155/47/9/309
- 31. Tabor Z. Quantifying quality of trabecular bone from low-resolution images. Nalecz Institute of Bio-cybernetics and Biomedical Engineering Polish Academy of Science, Warsaw, 2009; 16-56.
- 32. Karim L, Hussein AI, Morgan EF, et al. The mechanical behavior of bone. In: Marcus R, Feldman D, Dempster DW, Luckey M, Cauley JA, editors. Osteoporosis. Oxford: Academic Press; 2013. p. 431-452. https://doi.org/10.1016/B978-0-12-415853-5.00019-4
- 33. Boskey AL, Imbert L. Bone quality changes associated with aging and disease: a review. Ann N Y Acad Sci. 2017;1410:93-106. https://doi.org/10.1111/nyas.13937
- 34. Jain RK, Vokes T. Dual-energy X-ray absorptiometry. J Clin Densitometry. 2017;20:291-303. https://doi.org/10.1016/j.jocd.2017.06.014
- 35. American College of Radiology. ACR-SPR-SSR practice guideline the performance of quantitative computed tomography (QCT) bone densitometry. 2013. Available at: https://www.acr.org/-/media/ACR/Files/Practice-Parameters/QCT.pdf?la=en (Accessed 12 April 2024).
- 36. Yamada S, Chiba K, Okazaki N, et al. Correlation between vertebral bone microstructure and estimated strength in elderly women: an ex-vivo HR-pQCT study of cadaveric spine. Bone. 2019;120:459-464. https://doi.org/10.1016/j.bone.2018.12.005
- 37. Liu Y, Wang L, Su Y, et al. CTXA hip: the effect of partial volume correction on volumetric bone mineral density data for cortical and trabecular bone. Arch Osteoporos. 2020;15:50. https://doi.org/10.1007/s11657-020-00721-8
- 38. Engelke K. Quantitative computed tomography – current status and new developments. J Clin Densitom. 2017;20:309-321. https://doi.org/10.1016/j.jocd.2017.06.017
- 39. Checefsky WA, Abidin AZ, Nagarajan MB, et al. Assessing vertebral fracture risk on volumetric quantitative computed tomography by geometric characterization of trabecular bone structure. Proc SPIE - Int Soc Opt Eng. 2016;9785:978508. https://doi.org/10.1117/12.2216898
- 40. Lee DC, Hoffmann PF, Kopperdahl DL, et al. Phantomless calibration of CT scans for measurement of BMD and bone strength-inter-operator reanalysis precision. Bone. 2017;103:325-33. https://doi.org/10.1016/j.bone.2017.07.029
- 41. Gibson LJ. Biomechanics of cellular solid. J Biomech. 2005;38:377-399. https://doi.org/10.1016/j.jbiomech.2004.09.027
- 42. Moeendarbary E, Harris AR. Cell mechanics: principles, practices, and prospects. Rev Syst Biol Med. 2014;6:371-388. https://doi.org/10.1002/wsbm.1275
- 43. Costanza G, Solaiyappan D, Tata ME. Properties, applications and recent developments of cellular solid materials: A review. Materials. 2023;16:7076. https://doi.org/10.3390/ma16227076
- 44. Coulombe JC, Mullen ZK, Lynch ME, et al. Application of machine learning classifiers for microcomputed tomography data assessment of mouse bone microarchitecture. MethodsX. 2021;8:101497. https://doi.org/10.1016/jmex.2021.101497
- 45. Kodama M, Takeuchi A, Uesugi M, at al. Machine learning super-resolution of laboratory CT images in all-solid-state batteries using synchrotron radiation CT as training data. Energy and AI. 2023;100305. https://doi.org/10.1016/j.egyai.2023.100305
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc929c90-bc98-46b6-bda8-f891507e9e33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.