PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development and Analysis of Current Collectors for Proton Exchange Membrane Fuel Cells

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hydrogen fuel cells are gaining popularity in power-consuming devices due to their zero-emission characteristics. However, ohmic resistance, which arises from the resistance to electron flow through the electrodes and external circuit, can cause reduced efficiency and voltage drops in a fuel cell. This research aims to develop current collector plates for proton exchange membrane fuel cells with optimal design, high electrical conductivity, and thermal conductivity to mitigate ohmic resistance. Six different designs and five different materials—copper, brass, aluminum, stainless steel 316, and stainless steel 304—were considered for this purpose. The study involved experimental electrical conductivity and fuel cell performance tests to identify the best material and design for the current collector. Results indicated that brass and copper exhibited the least resistivity and favorable material characteristics. Consequently, all six current collector plate designs were developed using brass and copper with various machining and finishing processes. Performance testing on a fuel cell test station revealed that brass current collector plate design 5, featuring open ratios, demonstrated superior performance. Ultimately, the optimum design and material selection of the current collector plates have led to the development of fuel cells with reduced ohmic resistance and improved overall performance.
Twórcy
autor
  • Visvesvaraya Technological University, Belgaum, 590018, Karnataka, India
  • School of Engineering & Technology, Christ University, Bangalore, India
autor
  • Department of Mechanical Engineering, NMAM Institute of Technology, 574110, Karnataka, India
  • Department of Physics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
  • Department of Physics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
Bibliografia
  • 1. Fan L.F.L., Tu Z., Chan S.H. Recent development of hydrogen and fuel cell technologies: A review, Energy Reports, 2021; 7: 8421–8446, https://doi.org/10.1016/j.egyr.2021.08.003.
  • 2. Shaoxuan Z., Weijian Y., Xiaoqiang L., Jiamu C., Front Y.Z. Output power regulation system for portable micro fuel cell systems, Frontiers in Energy Research, 2023; 11. https://doi.org/10.3389/fenrg.2023.1118743.
  • 3. Adamson K.A., Butler J., Hugh M. Fuel cell today industry review: Fuel cells: Commercialization Platinum Met. 2008; 52(2): 123. https://doi.org/10.1595/147106708X292508.
  • 4. Jiao, K., Xuan, J., Du, Q., Bao, Z., Xie, B., Wang, B., Zhao, Y., Fan, L., Wang, H., Hou, Z., Huo, S., Brandon, N.P., Yin, Y., Guiver, M.D. Designing the next generation of proton-exchange membrane fuel cells. Nature 2021; 595: 361–369. https://doi.org/10.1038/s41586-021-03482-7.
  • 5. Wang, Y., Chen, K.S., Mishler, J., Cho, S.C., Adroher, X.C. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 2011; 88(4): 981–1007. https://doi.org/10.1016/j.apenergy.2010.09.030.
  • 6. Performance characterization of high surface area Pt/C cathode catalyst layers in PEM fuel cells” by Celik, I., Matian, M., Smirnova, A.L., Electrochimica Acta, 2020, https://doi.org/10.1016/j.electacta.2020.136093.
  • 7. Su Y., Yin C., Hua S., Wang R., Tang H. Study of cell voltage uniformity of proton exchange membrane fuel cell stack with an optimized artificial neural network model, International Journal of Hydrogen Energy, 2022; 47: 67, https://doi.org/10.1016/j.ijhydene.2022.06.240.
  • 8. Jordy S., Mayken E.-A., Tingshuai L., Andersson M. A detailed analysis of internal resistance of a PEFC comparing high and low humidification of the reactant gases. Frontiers in Energy Research, 2020. https://doi.org/10.3389/fenrg.2020.00217.
  • 9. Zhang X., Zhao Y., Xu L., Hu Z., Zhao G., Sun H., Li J. and Ouyang M. Polarization decomposing of proton exchange membrane fuel cell considering liquid water accumulation. Journal of The Electrochemical Society, 2022; 169: 124517. https://doi.org/10.1149/1945-7111/aca6a8.
  • 10. Salhani C., Rastikian J., Barraud C., Lafarge P., Della Rocca M.L. Seebeck coefficient of thin films close to the metal-insulator transition for molecular junctions. Physical Review Applied, 2019; 11(1): 014050. https://doi.org/10.1103/PhysRevApplied.11.014050.
  • 11. Gomi H., Yoshino T. Resistivity, seebeck coefficient, and thermal conductivity of platinum at high pressure and temperature. Physical Review B, 2019; 100(21): 214302. https://doi.org/10.1103/PhysRevB.100.214302.
  • 12. Braz B.A., Moreira C.S., Oliveira V.B., Pinto A.M.F.R. Effect of the current collector design on the performance of a passive direct methanol fuel cell. Electrochimica Acta, 2019. https://doi.org/10.1016/j.electacta.2019.01.131.
  • 13. Li P., Ki J.P., Liu H. Analysis and optimization of current collecting systems in PEM fuel cells. International Journal of Energy and Environmental Engineering 2012; 1–10. https://doi.org/10.1186/2251-6832-3-2.
  • 14. Gunduz T., Demircan T. Numerical analysis of the effects of current collector plate geometry on performance in a cylindrical PEM fuel cell, International Journal of Hydrogen Energy, 2022; 47(39): 17393–17406. https://doi.org/10.1016/j.ijhydene.2022.03.221.
  • 15. Yean-Der K., Ke T.-R., Lyu J.-L., Sung M.-F., and Do J.-S. Development of a current collector with a graphene thin film for a proton exchange membrane fuel cell module. Molecules 2020; 4: 955. https://doi.org/10.3390/molecules25040955.
  • 16. Boni, M., Surapaneni, S.R., Golagani, N.S. Experimental investigations on the effect of current collector open ratio on the performance of a passive direct methanol fuel cell with liquid electrolyte layer. Chem. Pap 2021; 75: 27–38. https://doi.org/10.1007/s11696-020-01277-0.
  • 17. Rossi Z.C., Faucheux V. Micro PEM fuel cell current collector design and optimization with CFD 3D modeling. International Journal of Hydrogen Energy, 2011. https://doi.org/10.1016/j.ijhydene.2011.08.020.
  • 18. Ning, F., Shen, Y., Bai, C., Wei, J., Lu, G., Cui, Y., Zhou, X. Critical importance of current collector property to the performance of flexible electrochemical power sources. Chinese Chemical Letters 2019. https://doi.org/10.1016/j.cclet.2019.02.032.
  • 19. Sun H., Zhang G., Guo L.-J. A novel technique for measuring current distributions in PEM fuel cells, Journal of Power Sources 2006; 158(1): 326–332. https://doi.org/10.1016/j.jpowsour.2005.09.046.
  • 20. Pukha V.E., Glukhov A.A., Belmesov A.A., Kabachkov E.N., Khodos I.I., Khadem M., Kim D.-E., Karaseov P.A. Corrosion-resistant nanostructured carbon-based coatings for applications in fuel cells based on bipolar plates, Vacuum 2023. https://doi.org/10.1016/j.vacuum.2023.112643.
  • 21. Asri N.F., Husaini T., Sulong A.B. Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review, International Journal of Hydrogen Energy 2017; 42(14): 9135–9148. https://doi.org/10.1016/j.ijhydene.2016.06.241.
  • 22. Shi J., Zhang P., Han Y., Wang H., Wang X., Yu Y., Sun J. Investigation on electrochemical behavior and surface conductivity of titanium carbide modified Ti bipolar plate of PEMFC, International Journal of Hydrogen Energy 2020; 45(16): 10050–10058. https://doi.org/10.1016/j.ijhydene.2020.01.203.
  • 23. Che J., Yi P., Peng L., Lai X. Impact of pressure on carbon films by PECVD toward high deposition rates and high stability as metallic bipolar plate for PEMFCs, International Journal of Hydrogen Energy 2020; 45(32): 16277–16286. https://doi.org/10.1016/j.ijhydene.2020.04.078.
  • 24. Sahu I.P., Krishna G., Biswas M., Das M.K. Performance study of PEM fuel cell under different loading conditions. Energy Procedia, 2014; 54: 468–478. https://doi.org/10.1016/j.egypro.2014.07.289.
  • 25. Addala S., Naidu I.E.S. Modeling and analysis of fuel cell power generation system using proportional integral speed controller. Adv. Sci. Technol. Res. J. 2024; 18(2): 187–195. https://doi.org/10.12913/22998624/184340.
  • 26. Addala S., Naidu I.E.S. Investigation of sodium hydroxide on the electrolysis and silica based nano fluid on the performance of proton exchange membrane fuel cell. Adv. Sci. Technol. Res. J. 2024; 18(5): 413–420. https://doi.org/10.12913/22998624/191313.
  • 27. Marappan, M., Palaniswamy, K., Velumani, T., Chul, K.B., Velayutham, R., Shivakumar, P., Sundaram, S. Performance studies of proton exchange membrane fuel cells with different flow field designs – Review, 2021. The Chemical Record. https://doi.org/10.1002/tcr.202000138.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc917596-1fc1-433d-9314-0f6c0a8762e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.