PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Metrological investigation and calibration of reference standard block for ultrasonic non-destructive testing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ultrasonic Non-Destructive Testing (NDT) is a powerful tool used for testing, verification, and inspection of material, especially for quality control and assurance. The key applications are the identification of flaws, cracks, irregularities, defects, and estimation of material thickness. The standard documents available for ultrasonic NDT are used as a guideline for the specifications and certification of the calibration reference standard block (RSB). The method for metrological characterization of the testing blocks is not specifically addressed in standard documents and is left to the wisdom of metrologists working in the ultrasonic calibration laboratories to adopt the suitable one. The ultrasonic flaw detector (UFD) is used most widely in ultrasonic NDT. The International Institute of Welding (IIW) V1 RSB standard is used as a reference to ascertain the functionalities of UFDs. In this article, we have proposed a new methodology for calibration of RSB and evaluation of associated measurement uncertainty along with influencing parameters. The proposed method conforms to the international standard ISO 2400:2012 and Indian standard IS 4904:2006 for validation purposes. According to these standards, the clauses for RSB e.g., dimension and quality of material have been examined. The expanded measurement uncertainty in thickness, ultrasonic longitudinal velocity, ultrasonic attenuation, parallelism and perpendicularity is ±0.068 mm, ±6.70 m/s, ±0.22 dB, and ±0.066 mm, respectively. The measurement uncertainty of these parameters is well within as per clauses stipulated in the standard documents except the ultrasonic longitudinal velocity for the IS standards.
Rocznik
Strony
525--538
Opis fizyczny
Bibliogr. 38 poz., fot., rys., tab., wykr., wzory
Twórcy
  • Pressure, Vacuum and Ultrasonic Metrology, Division of Physico-Mechanical Metrology, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
  • Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
autor
  • Pressure, Vacuum and Ultrasonic Metrology, Division of Physico-Mechanical Metrology, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
  • Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
autor
  • Pressure, Vacuum and Ultrasonic Metrology, Division of Physico-Mechanical Metrology, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
  • Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
Bibliografia
  • [1] Bernieri, A., Ferrigno, L., Laracca, M., Rasile, A., & Ricci, M. (2018). Ultrasonic NDT on aluminum bars: An experimental performance comparison of excitation and processing techniques. Measurement, 128, 393-402. https://doi.org/10.1016/j.measurement.2017.10.040
  • [2] Yilmaz, B., Asokkumar, A., Jasiūnienė, E., & Kažys, R. J. (2020). Air-coupled, contact, and immersion ultrasonic non-destructive testing: Comparison for bonding quality evaluation. Applied Sciences, 10(19), 6757. https://doi.org/10.3390/app10196757
  • [3] Zhang, H., Zhang, C., Wang, C., & Xie, F. (2020). A survey of non-destructive techniques used for inspection of bearing steel balls. Measurement, 159, 107773. https://doi.org/10.1016/j.measurement.2020.107773
  • [4] Revel, G. M., Pandarese, G., & Cavuto, A. (2013). Advanced ultrasonic non-destructive testing for damage detection on thick and curved composite elements for constructions. Journal of Sandwich Structures & Materials, 15(1), 5-24. https://doi.org/10.1177/1099636212456861
  • [5] Luo, X., Gong, H., He, Z., Zhang, P., & He, L. (2021). Recent advances in applications of power ultrasound for petroleum industry. Ultrasonics Sonochemistry, 70, 105337. https://doi.org/10.1016/j.ultsonch.2020.105337
  • [6] Gao, X., Shi, Y., Du, K., Zhu, Q., & Zhang, W. (2020). Sparse blind deconvolution with nonconvex optimization for ultrasonic NDT application. Sensors, 20(23), 6946. https://doi.org/10.3390/s20236946
  • [7] Gholizadeh, S. (2016). A review of non-destructive testing methods of composite materials. Procedia Structural Integrity, 1, 50-57. https://doi.org/10.1016/j.prostr.2016.02.008
  • [8] Carino, N. J. (2001). The impact-echo method: an overview. Structures 2001: A Structural Engineering Odyssey, 1-18. https://doi.org/10.1061/40558(2001)15
  • [9] Mihaljević, M., Markučič, D., Runje, B., & Keran, Z. (2019). Measurement uncertainty evaluation of ultrasonic wall thickness measurement. Measurement, 137, 179-188. https://doi.org/10.1016/j.measurement.2019.01.027
  • [10] Dubey, S. U., Dubey, P. K., Rajagopalan, S., & Sharma, S. J. (2019). Real-time implementation of Kalman filter to improve accuracy in the measurement of time of flight in an ultrasonic pulse-echo setup. Review of Scientific Instruments, 90(2), 025105. https://doi.org/10.1063/1.5048966
  • [11] Kalms, M., Focke, O., & Kopylow, C. V. (2008, October). Applications of laser ultrasound NDT methods on composite structures in aerospace industry. In the Ninth International Symposium on Laser Metrology. International Society for Optics and Photonics. 7155, p. 71550E. https://doi.org/10.1117/12.814512
  • [12] Dubey, P. K., Rajagopalan, S., Vyaghra, V. R., Pendsey, V. M., & Sharma, S. J. (2008). High resolution ultrasonic attenuation measurement in pulse-echo setup. MAPAN-J. Metrology Society of India, 23(4), 245-252.
  • [13] Lipa, L., Navarro, L. M., & Pasquel, E. N. (2019). Influence of Steel Bars in Detection of Voids in Concrete Using Ultrasonic Pulse-Echo Method. ACI Materials Journal, 116(4), 223-234. https://doi.org/10.14359/51715582
  • [14] Zheng, G., Xia, W., Ma, L., Sun, W., Sun, C., Zhao, X., & Wang, K. (2016). An experimental method to measure the layer thickness and wave velocity of copper-steel composite board without interface echo. Measurement, 91, 77-83. https://doi.org/10.1016/j.measurement.2016.05.044
  • [15] Towsyfyan, H., Biguri, A., Boardman, R., & Blumensath, T. (2020). Successes and challenges in non-destructive testing of aircraft composite structures. Chinese Journal of Aeronautics, 33(3), 771-791. https://doi.org/10.1016/j.cja.2019.09.017
  • [16] Kustroń, P., Korzeniowski, M., Piwowarczyk, T., & Sokołowski, P. (2017). Application of Immersion Ultrasonic Testing For Non-Contact Quality Evaluation of Magnetically Impelled Arc Butt Welded Drive Shafts of Motor Vehicles. Advances in Automobile Engineering, 6(1).
  • [17] Ramzi, R., Mahmod, M. F., & Bakar, E. A. (2015). Immersion ultrasonic inspection system for small scaled composite specimen. ARPN Journal of Engineering and Applied Sciences, 10(22), 17146-17150.
  • [18] Yang, M., & Qiao, P. (2005). Modeling and experimental detection of damage in various materials using the pulse-echo method and piezoelectric sensors/actuators. Smart Materials and Structures, 14(6), 1083. https://doi.org/10.1088/0964-1726/14/6/001
  • [19] Olympus Industrial. (2011). O. Ndt, EPOCH 1000 Series User’s Manual. www.olympus-ims.com/en/ut-flaw/epoch1000/
  • [20] Maggi, L. E., Silva, C. E. R. D., Alvarenga, A. V., & Costa-Félix, R. P. B. D. (2011, February). Ultrasonic calibration and certification of V1 and V2 type reference standard blocks for use in Non-Destructive Testing. In Journal of Physics: Conference Series. IOP Publishing (Vol. 279, No. 1, p. 012029). https://doi.org/10.1088/1742-6596/279/1/012029
  • [21] Himawan, R., Lie, F., Basoeki, P. D., & Haryanto, M. (2019, April). Applicability Study of Ultrasonic Flaw Detector for Nuclear Grade Graphite Examination. In Journal of Physics: Conference Series IOP Publishing. (Vol. 1198, No. 2, p. 022018). https://doi.org/10.1088/1742-6596/1198/2/022018
  • [22] Hoseini, M. R., Zuo, M. J., & Wang, X. (2013). Using ultrasonic pulse-echo B-scan signals for estimation of time of flight. Measurement, 46(8), 3593-3599. https://doi.org/10.1016/j.measurement.2013.06.014
  • [23] Yadav, K., Yadav, S., & Dubey, P. K. (2021). A Comparative Study of Ultrasonic Contact and Immersion Method for Dimensional Measurements. MAPAN, 36(2), 319-324. https://doi.org/10.1007/s12647-021-00452-2
  • [24] Bureau of Indian Standards. (2006) Indian standard IS 4904:2006. https://archive.org/details/gov.in.is.4904.2006
  • [25] F.O.R. Standardization, D.E. Normalisation, International Standard ISO 1987.
  • [26] Hotchkiss, F. H. C. (1990). Guide to designs of IIW-type blocks. NDT International, 23(6), 319-331. https://doi.org/10.1016/0308-9126(90)90857-K
  • [27] Davis, A. G., Ansari, F., Gaynor, R. D., Lozen, K. M., Rowe, T. J., Caratin, H., & Sansalone, M. J. (1998). Nondestructive test methods for evaluation of concrete in structures. American Concrete Institute, ACI, 228, 4.
  • [28] Lerch, T. P., Renken, M. C., & Fortunko, C. M. (1998, October). Accurate measurements of longitudinal-wave velocity in IIW-type calibration blocks. In 1998 IEEE Ultrasonics Symposium. Proceedings (Cat. No. 98CH36102) (Vol. 2, pp. 1159-1162). IEEE. https://doi.org/10.1109/ULTSYM.1998.765044
  • [29] Calmon, P., Bird, C., & Moles, M. New ISO Calibration Block for Phased Array Ultrasonic Testing.
  • [30] Standard, B., & ISO, B. (2003). Steels - micrographic determination of the apparent grain size. BS EN ISO, 643, 44.
  • [31] Method of indicating surface texture on technical drawings (Indian Standard) IS 10719 2009.
  • [32] ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories 2017.
  • [33] Hellier, C. J. (2013). Handbook of nondestructive evaluation. McGraw-Hill Education.
  • [34] Manual, Training. Ultrasonic testing of materials at level 2 1988.
  • [35] IEC 61161:2012-Ultrasonic-power measurement - radiation force balances and performance requirements 2012.
  • [36] Burley, C. E. (1977). Calibration Blocks for Ultrasonic Testing. ASTM International. https://doi.org/10.1520/STP27027S
  • [37] Kim, Y. H., Song, S. J., Lee, S. S., Lee, J. K., Hong, S. S., & Eom, H. S. (2002). A study of the couplant effects on contact ultrasonic testing. Journal of the Korean Society for Nondestructive Testing, 22(6), 621-626.
  • [38] Pham, T. V., & Kien, D. T. (2017). Influence of temperature on mechanical characteristics of 1018 low carbon steel estimated by ultrasonic non-destructive testing method. Indian Journal of Pure & Applied Physics (IJPAP), 55(6), 431-435.
Uwagi
1. The authors would like to thank the Director of the CSIR-National Physical Laboratory, New Delhi, for providing the necessary facilities to carry out this work. One of the authors (Kalpana Yadav) would like to thank the Department of Science and Technology for the fellowship (DST Inspire). This work has also been supported by the Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc9092ca-f16c-4b10-a259-5b935f27297f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.