PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Właściwości betonu zawierającego przetworzone maseczki ochronne wykorzystywane podczas pandemii koronawirusa SARS-CoV-2

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Performance of concrete containing recycled masks used for personal protection during SARS-CoV-2 coronavirus pandemic
Języki publikacji
PL EN
Abstrakty
PL
Wybuch pandemii COVID-19 spowodował tragiczne konsekwencje dla zdrowia publicznego oraz zwiększył produkcję odpadów medycznych, które mogą przyczyniać się do dalszego rozprzestrzeniania wirusa, zagrażać zdrowiu obywateli oraz środowisku naturalnemu. W celu ograniczenia tych problemów zaproponowano metodę przetwarzania maseczek ochronnych, w sposób umożliwiający ich powtórne użycie podczas produkcji betonu. W artykule przedstawiono wyniki badań opisujące wpływ dodatku przetworzonego odpadu medycznego na właściwości zawierającego go betonu. Wyznaczono wytrzymałość na ściskanie i rozciąganie betonu sporządzonego z dodatkiem przetworzonych maseczek oraz betonu referencyjnego. Wykonano badania przepuszczalności właściwej przed i po ekspozycji na wysoką temperaturę w celu sprawdzenia, czy materiał otrzymany z recyklingu charakteryzuje się podobnymi właściwościami co stosowane włókna polipropylenowe. Dodatkowo wykonano badanie wpływu przetworzonych maseczek na ciepło hydratacji.
EN
Alongside with all its difficulties and tragic consequences, the outbreak of the COVID-19 pandemic has also caused a drastic increase in the amount of the generated healthcare wastes. Healthcare wastes can accelerate the further spread of the virus and threaten the health of citizens and the environment. In order to deal with this lateral problem of the on-going pandemic, facemask wastes were processed and recycled in concrete materials. The objective of this research was to investigate the influences of recycled facemask products on the performance of concrete. To do so, the compressive and splitting tensile strength tests were performed to assess the mechanical behaviour of concrete with and without of the recycled facemask products. Moreover, gas permeability test was conducted on the designed samples before and after exposure to fire temperature, to verify whether the proposed addition provides a similar effect like conventional polypropylene fibres, or not. The results were supplemented with the heat of cement hydration measurements.
Czasopismo
Rocznik
Strony
2--13
Opis fizyczny
Bibliogr. 32 poz., il., tab.
Twórcy
  • Lodz University of Technology, Department of Building Materials Physics and Sustainable Design, Lodz, Poland
  • Lodz University of Technology, Department of Building Materials Physics and Sustainable Design, Lodz, Poland
  • Lodz University of Technology, Department of Building Materials Physics and Sustainable Design, Lodz, Poland
autor
  • Lodz University of Technology, Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz, Poland
  • Lodz University of Technology, Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz, Poland
Bibliografia
  • 1. Worldometers, Reported Cases and Deaths by Country or Territory. https://www.worldometers.info/coronavirus, December 2021.
  • 2. A.K. Das, M.N. Islam, M.M. Billah, A Sarker, COVID 19 pandemic and health care solid waste management strategy - A mini-review. Sci. Total Environ. 778, 146220 (2021).
  • 3. WHO, Coronavirus disease (COVID-19) pandemic, https://www.who.int/emergencies/diseases/novel-coronavirus-2019, December 2021.
  • 4. N. Singh, Y. Tang, Z. Zhang, C. Zheng, COVID-19 waste management: Effective and successful measures in Wuhan, China. Resour. Conserv. Recycl. 163, 105071 (2020).
  • 5. G. Wei, L. Manyu, The Hidden Risks of Medical Waste and the COVID-19 Pandemic. https://www.waste360.com/medical-waste/hidden-risks-medical-waste-and-covid-19-pan- demic, (2020).
  • 6. P. Nowakowski, S. Kusnierz, P. Sosna, J. Mauer, D. Maj, Disposal of Personal Protective Equipment during the COVID-19 Pandemic Is a Challenge for Waste Collection Companies and Society: A Case Study in Poland. Resources, 9, 116 (2020); https://doi:10.3390/resources9100116
  • 7. A.D. Zand, A.V. Heir, Environmental impacts of new Coronavirus outbreak in Iran with an emphasis on waste management sector. J. Mater. Cycles Waste Manag. 23, 240-247 (2020).
  • 8. ISWA - Netherlands Country Specific Waste Management Responses, COVID-19 Response International knowledge sharing on Waste Management. https://www.iswa.org/fileadmin/galleries/0001_COVID/Netherlands_Waste_Management_during_Covid19. pdf: https://www.iswa.org/iswa/covid-19/, 2020.
  • 9. C. Nzediegwu, S.X. Chang, Improper solid waste management increases potential for COVID-19 spread in developing countries. Resour. Conserv. Recycl. 161, 104947 (2020) http://www.xinhuanet.com/english/2020-03/02/c_138835152.html.
  • 10. D. Hantoko, X. Li, A. Pariatamby, K. Yoshikawa, M. Horttanainen, M. Yan, Challenges and practices on waste management and disposal during COVID-19 pandemic. J. Environ. Manage. 286, 112140 (2021).
  • 11. N. Van Doremalen, T. Bushmaker, D.H. Morris, M.G. Holbrook, A. Gamble, B.N. Williamson, A. Tamin, J.L. Harcourt, N.J. Thornburg, S.I. Gerber. J.O. Lloyd-Smith, E. de Wit, V.J. Munster, Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. NEJM. 382, 1564-1567 (2020).
  • 12. K.R. Vanapalli, H.B. Sharma, V.P. Ranjan, B. Samal, J. Bhattacharya, B.K. Dubey, S. Goel, Challenges and strategies for effective plastic waste management during and post COVID-19 pandemic. Sci. Total Environ. 750, 141514 (2021).
  • 13. A. Mohajerani, Y. Tanriverdi, B.T. Nguyen, K.K. Wong, H.N. Dissanayake, L. Johnson, D. Whitfield, G. Thomson, E. Alqattan, A. Rezaei, Physico-mechanical properties of asphalt concrete incorporated with encapsulated cigarette butts. Constr. Build. Mater. 153, 69-80 (2017).
  • 14. M. Nehdi, J. Sumner, Recycling waste latex paint in concrete. Cem. Concr. Res. 33, 857-863 (2003).
  • 15. K.H. Mo, U.J. Alengaram, M.Z. Jumaat, S.C. Lee, W.I. Goh, C.W. Yuen, Recycling of seashell waste in concrete: A review. Constr. Build. Mater. 162 (2018) 751-764.
  • 16. P. Guo, W. Meng, H. Nassif, H. Gou, Y. Bao, New perspectives on recycling waste glass in manufacturing concrete for sustainable civil infrastructure. Constr. Build. Mater. 257, 119579 (2020).
  • 17. S. Fiore, M.C. Zanetti, Foundry Wastes Reuse and Recycling in Concrete Production. Am. J. Environ. Sci. 3(3), 135-142 (2007).
  • 18. S.K. Lynch, M. Saberian, J. Li, R. Roychand, G. Zhang, Preliminary evaluation of the feasibility of using polypropylene fibres from COVID-19 single-use face masks to improve the mechanical properties of concrete. J. Clean. Prod. 296, 126460 (2021).
  • 19. M. Koniorczyk, D. Bednarska, A. Masek, S. Cichosz, Performance of concrete containing recycled masks used for personal protection during coronavirus pandemic. Constr. Build. Mater. 324 (21), 26712 (2022).
  • 20. M. Zeim, D. Leithner, R. Lackner, H.A. Mang, How do polypropylene fibers improve the spalling behavior of in-situ concrete? Cem. Concr. Res. 36(5), 929-942 (2006).
  • 21. Y.S. Heo, J.G. Sanjayan, C.G. Han, M.C. Han, Synergistic effect of combined fibers for spalling protection of concrete in fire. Cem. Concr. Res. 40(10), 1547-1554 (2010).
  • 22. I. Hager, P. Pimienta, Influence of the addition of polypropylene fibers on the mechanical properties of high-performance concretes exposed to high temperature. Cem. Wapno Beton 8(5), 263-266, (2003).
  • 23. I. Hager, T. Tracz, Influence of elevated temperature on selected properties of high performance concrete modified with the addition of polypropylene fibres. Cem. Wapno Beton 14(1) 3-10 (2009).
  • 24. T. Tracz, J. Śliwiński, Homogenety of permeability test results of high-performance concrete. Cem. Wapno Beton 10(1), 48-53 (2005).
  • 25. S. Fávaro, A. Rubira, E. Muniz, E. Radovanovic, Surface modification of HDPE, PP, and PET films with KMnO4/HCl solutions. Polym. Degrad. Stab. 92(7), 1219-1226 (2007).
  • 26. M. Sclavons, et al., Quantification of the maleic anhydride grafted onto polypropylene by chemical and viscosimetric titrations, and FTIR spectroscopy. Polymer 41(6), 1989-1999 (2000).
  • 27. M. Chylińska, H. Kaczmarek, D. Moszyński, B. Królikowski, J. Kowalonek, Surface studies of UV irradiated polypropylene films modified with mineral fillers designed as piezoelectric materials. Polymers 12(3), 562 (2020).
  • 28. D. Zhang, K. Li, Concrete gas permeability from different methods: Correlation analysis. Cem. Concr. Compos. 104, 103379 (2019).
  • 29. American Society for Testing and Materials, ASTM C1679 - 2017. Standard Practice for Measuring Hydration Kinetics of Hydraulic Cementitious Mixtures Using Isothermal Calorimetry (2017).
  • 30. C.M. Martín, N.B. Scarponi, Y.A. Villagran, D.G. Manzanal, T.M. Pique, Pozzolanic activity quantification of hollow glass microspheres. Cem. Concr. Compos. 118, 103981 (2021).
  • 31. A. Younis, U. Ebead, P. Suraneni, A. Nanni, Fresh and hardened properties of seawater-mixed concrete. Constr. Build. Mater. 190, 276-286 (2018).
  • 32. X. Liu, G. Ye, G. De Schutter, Y. Yuan, L. Taerwe, On the mechanism of polypropylene fibres in preventing fire spalling in self-compacting and high-performance cement paste. Cem. Concr. Res. 38, 487-499 (2008).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc896824-3121-49a8-a90e-5dc3d980324a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.