PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Extended Evaluation of the Impact of Rainfall, Sewer Network and Land Use Retention on Drainage System Performance in a Multi-Criteria Approach – Modeling, Sensitivity Analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An extensive methodology for analyzing the impact of catchment and sewer network retention on drainage system operating conditions during hydraulic overloading is presented. To evaluate the performance of the sewer system and identify the need for repair actions, logistic regression models were developed to predict the unit flooding volume and manhole overflowing. An advanced sensitivity analysis was performed to determine the key parameters (retention and roughness of impervious and pervious areas as well as sewer channel retention) conditioning the reduction of uncertainty in the simulation results and ensuring the assumed hydraulic effect. A coefficient expressing the quotient of the duration of rainfall conditioning the exceedance of the limits of the unit flooding volume (13 m3·ha−1) as well as the degree of overflowed manholes (0.32) was determined, allowing the determination of the key performance criterion of the sewer network to take corrective action depending on field and channel retention. It was shown that the catchment area retention had the key influence on the conditions of sewer operation and the probability of remedial work. Increasing the rainfall duration led to a decrease in sensitivity coefficients with respect to the identified parameters of the SWMM model, which is important when selecting rainfall events for the calibration and validation sets. The usefulness of the developed methodology was demonstrated at the stage of building mechanistic models, which is of significance when planning field studies.
Twórcy
  • Department of Hydraulic and Sanitary Engineering, Warsaw University of Life Sciences, ul. Nowoursynowska 166, 02-787, Warsaw, Poland
  • Department of Science and Engineering of Materials, Polytechnic University of Marche Ancona, Ancona 60121, Italy
autor
  • Department of Hydraulic and Sanitary Engineering, Warsaw University of Life Sciences, ul. Nowoursynowska 166, 02-787, Warsaw, Poland
  • Department of Applied Mathematics, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin, Poland
  • Faculty of Environmental Engineering, Geomatics and Renewable Energy, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314, Kielce, Poland
  • Department of Water Supply and Wastewater Disposal, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
  • Department of Environmental Protection Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
autor
  • Faculty of Environmental Engineering, Geomatics and Renewable Energy, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314, Kielce, Poland
Bibliografia
  • 1. Rathnayake, U., Faisal Anwar, A.H.M. Dynamic control of urban sewer systems to reduce combined sewer overflows and their adverse impacts. J. Hydrol. 2019, 579, 124150. https://doi.org/10.1016/j.jhydrol.2019.124150.
  • 2. Müller, A., Österlund, H., Marsalek, J., Viklander, M. The pollution conveyed by urban runoff: A review of sources. Sci. Total Environ 2020, 709, 136125. https://doi.org/10.1016/j.scitotenv.2019.136125.
  • 3. Chang, H., Pallathadka, A., Sauer, J., Grimm, N.B., Zimmerman, R., Cheng, C., Iwaniec, D.M., Kim, Y., Lloyd, R., McPhearson, T., Rosenzweig, B., Troxler, T., Welty, C., Brenner, R., Herreros-Cantis, P. Assessment of urban flood vulnerability using the social-ecological-technological systems framework in six US cities. Sustain. Cities Soc 2021, 68, 102786. https://doi.org/10.1016/j.scs.2021.102786.
  • 4. McGarity, A.E. Watershed systems analysis for urban storm-water management to achieve water quality goals. J. Water Resour. Plan. Manag. 2013, 139, 464–477. https://doi.org/10.1061/(asce) wr.1943-5452.0000280.
  • 5. Eshtawi, T., Evers, M., Tischbein, B., Diekkrüger, B. Integrated hydrologic modeling as a key for sustainable urban water resources planning. Water Res. 2016, 101, 411–428. https://doi.org/10.1016/j.watres.2016.05.061.
  • 6. EN 752. Drain and sewer systems outside buildings – Sewer system management, 2017.
  • 7. Baek, S.S., Ligaray, M., Pyo, J., Park, J.P., Pachepsky, Y., Chun, J.A., Cho, K.H. A novel water quality module of the SWMM model for assessing low impact development (LID) in urban watersheds. J. Hydrol., 2020, 586, 124886. https://doi.org/10.1016/j.jhydrol.2020.124886.
  • 8. Kordana, S., Słyś, D. An analysis of important issues impacting the development of stormwater management systems in Poland. Sci. Total Environ., 2020, 727, 138711. https://doi.org/10.1016/j.scitotenv.2020.138711.
  • 9. Szeląg, B., Kiczko, A., Łagód, G., De Paola, F. Relationship between rainfall duration and sewer system performance measures within the context of uncertainty. Water Res Manage., 2021, 35, 5073–5087. https://doi.org/10.1007/s11269-021-02998-x.
  • 10. Environment Agency. Thames Catchment Flood Management Plan - Chapter 3: Current flood risks and management. Environment Agency, Bristol, UK. 2009. Document available online: http://www.jubileeriver.co.uk/CFMP%202008%2008%20Chapter%203.pdf.
  • 11. Siekmann, M., Pinnekamp, J. Indicator Based Strategy to Adapt Urban Drainage Systems in Regard to the Consequences Caused by Climate Change, in: 12th International Conference on Urban Drainage. 2011, 11–16.
  • 12. Jayasooriya, V.M., Ng, A.W.M. Tools for modeling of stormwater management and economics of green infrastructure practices: A review. Water Air Soil Pollut., 2014, 225, 1–20. https://doi.org/10.1007/s11270-014-2055-1.
  • 13. Hung, F., Harman, C.J., Hobbs, B.S., Sivapalan, M. Assessment of climate, sizing, and location controls on green infrastructure efficacy: A timescale framework. Water Resour. Res. 2020, 56. e2019WR026141. https://doi.org/10.1029/2019WR026141.
  • 14. Platz, M., Simon, M., Tryby, M. Testing of the storm water management model low impact development modules. J Am Water Resour Assoc., 2020, 15, 283–296. https://doi.org/10.1111/1752-1688.12832.
  • 15. Shojaeizadeh, A., Geza, M., Hogue, S.T. GIP-SWMM: A new green infrastructure placement tool coupled with SWMM. J. Environ. Manage., 2021, 277, 111409. https://doi.org/10.1016/j.jenvman.2020.111409.
  • 16. Martins, R., Leandro, J., Djordjević, S. Influence of sewer network models on urban flood damage assessment based on coupled 1D/2D models. J. Flood Risk Manag., 2018, 11, S717–S728. https://doi.org/10.1111/jfr3.12244.
  • 17. Mignot, E., Li, X., Dewals, B. Experimental modelling of urban flooding: A review. J. Hydrol., 568, 2019, 334–342. https://doi.org/10.1016/j.jhydrol.2018.11.001.
  • 18. Leandro, J., Martins, R. A methodology for linking 2D overland flow models with the sewer network model SWMM 5.1 based on dynamic link libraries. Water Sci. Technol., 2016, 73, 3017–3026. https://doi.org/10.2166/wst.2016.171.
  • 19. Teng, J., Jakeman, A.J., Vaze, J., Croke, B.F.W., Dutta, D., Kim, S. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environ. Model. Softw. 2017, 90, 201–216. https://doi.org/10.1016/j.envsoft.2017.01.006.
  • 20. Bisht, D.S., Chatterjee, C., Kalakoti, S., Upadhyay, P., Sahoo, M., Panda, A. Modeling urban floods and drainage using SWMM and MIKE URBAN: A case study. Nat. Hazards, 2016, 84, 749–776. https://doi.org/10.1007/s11069-016-2455-1
  • 21. Ochoa-Rodriguez, S., Wang, L., Gires, A., Pina, R., Reinoso-Rondinel, R., Bruni, G., Ichiba, A., Gaitan, S., Cristiano, E., Asssel, J., Kroll, S., Murlà-Tuyls, D., Tisserand, B., Schertzer, D., Tchiguirinskaia, I., Onof, C., Willems, P., ten Veldhuis, A.E.J. Impact of spatial and temporal resolution of rainfall inputs on urban hydrodynamic modelling outputs: A multi- catchment investigation. J. Hydrol., 2015, 531, 389–407.
  • 22. Peleg, N., Blumensaat, F., Molnar, P., Fatichi, S., and Burlando, P. Partitioning the impacts of spatial and climatological rainfall variability in urban drainage modeling. Hydrol. Earth Syst. Sci., 2017, 21, 1559–1572. https://doi.org/10.5194/hess-21-1559-2017
  • 23. Cristiano, E., ten Veldhuis, M.C., van de Giesen, N. Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas – a review. Hydrol. Earth Syst. Sci., 2017, 21, 3859–3878. https://doi.org/10.5194/hess-21-3859-2017.
  • 24. Bárdossy, A. Calibration of hydrological model parameters for ungauged catchments. Hydrol. Earth Syst. Sci., 2007, 11, 703–710. https://doi.org/10.5194/hess-11-703-2007.
  • 25. Szeląg, B., Kowal, P., Kiczko, A., Białek, A., Wałek, G., Majerek, D., Siwicki, P., Fatone, F., Boczkaj, G. Integrated model for the fast assessment of flood volume: Modelling – management, uncertainty and sensitivity analysis. Journal of Hydrology, 2023, 625, part A, 129967. https://doi.org/10.1016/j.jhydrol.2023.129967.
  • 26. Szeląg, B., Gawdzik, J. Assessment of the effect of wastewater quantity and quality, and sludge parameters on predictive abilities of non-linear models for activated sludge settleability predictions. Pol. J. Environ. Stud., 2017, 26(1), 315–322. https://doi.org/10.15244/pjoes/64810.
  • 27. Szeląg, B., Majerek, D., Eusebi, A.L., Kiczko, A., de Paola, F., McGarity, A., Wałek, G., Fatone, F. Tool for fast assessment of stormwater flood volumes for urban catchment: A machine learning approach. Journal of Environmental Management, 2024, 355, 120214, https://doi.org/10.1016/j.jenvman.2024.120214.
  • 28. Bartkiewicz, L., Szeląg, B., Studziński, J. Impact assessment of input variables and ANN model structure on forecasting wastewater inflow into sewage treatment plants. Ochrona Środowiska, 2016, 38, 29–36. (in Polish).
  • 29. Beven, K., Binley, A. The future of distributed models: model calibration and uncertainty prediction. Hydrol. Process. 1992, 6, 279–298. https://doi.org/10.1002/hyp.3360060305.
  • 30. Fraga, I., Cea, L., Puertas, J., Suárez, J., Jiménez, V., Jácome, A. Global sensitivity and GLUE-based uncertainty analysis of a 2D-1D dual urban drainage model. J Hydrol Eng., 2016, 21, 04016004. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001335.
  • 31. Mannina, G., Cosenza, A., Viviani, G. Micropollutants throughout an integrated urban drainage model: Sensitivity and uncertainty analysis. J. Hydrol., 2017, 554, 397–405. https://doi.org/10.1016/j.jhydrol.2017.09.026.
  • 32. Morio, J. Global and local sensitivity analysis methods for a physical system. Eur. J. Phys., 2011, 32, 1577–1583. https://doi.org/10.1088/0143-0807/32/6/011.
  • 33. Razavi, S., Gupta, H.V. What do we mean by sensitivity analysis? The need for comprehensive characterization of “global” sensitivity in Earth and Environmental systems models, Water Resour. Res., 2015, 5, 3070–3092. https://doi.org/10.1002/2014WR016527.
  • 34. Bąk, Ł., Szeląg, B., Sałata, A., Studziński, J. Modeling of heavy metal (Ni, Mn, Co, Zn, Cu, Pb, and Fe) and PAH content in stormwater sediments based on weather and physico-geographical characteristics of the catchment-data-mining approach. Water, 2019, 11, 626. https://doi.org/10.3390/w11030626.
  • 35. Szeląg, B., Suligowski, R., De Paola, F., Siwicki, P., Majerek, D., Łagód, G. Influence of urban catchment characteristics and rainfall origins on the phenomenon of stormwater flooding: Case study. Environmental Modelling & Software, 2022, 150, 105335. https://doi.org/10.1016/j.envsoft.2022.105335.
  • 36. Bogdanowicz, E., Stachỳ, J. Maximum rainfall in Poland. Design Characteristics. Research Materials, s: Hydrology and Oceanology, 23. IMGW, Warszawa 1998.
  • 37. Beven, K., Binley, A. GLUE: 20 years on. Hydrol. Process. 2014, 28, 5897–5918. https://doi.org/10.1002/hyp.10082.
  • 38. Romanowicz, R.J., Beven, K.J. Comments on generalised likelihood uncertainty estimation. Reliab. Eng. Syst. Saf. 2006, 91, 1315–1321. https://doi.org/10.1016/j.ress.2005.11.030.
  • 39. Kiczko, A., Szeląg, B., Kozioł, A.P., Krukowski, M., Kubrak, E., Kubrak, J., Romanowicz, R.J. Optimal capacity of a stormwater reservoir for flood peak reduction. J. Hydrol. Eng. 2018, 23, 04018008. https://doi.org/10.1061/(asce)he.1943-5584.0001636.
  • 40. Szelag, B., Suligowski, R., Studziński, J., De Paola, F. Application of logistic regression to simulate the influence of rainfall genesis on storm overflow operations: A probabilistic approach. Hydrology and Earth System Sciences. 2020, 24, 595–614, https://doi.org/10.5194/hess-24-595-2020.
  • 41. Harrell, F.E. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. Springer Series in Statistics, New York. 2001.
  • 42. Petersen, B., Gernaey, K., Henze, M., Vanrolleghem, P.A. Evaluation of an ASM1 model calibration procedure on a municipal – industrial wastewater treatment plant. J. Hydroinform, 2002, 4, 15–38. https://doi.org/10.2166/hydro.2002.0003.
  • 43. Barco, J., Wong, K.M., Stenstrom, M.K. Automatic Calibration of the U.S. EPA SWMM Model for a Large Urban Catchment. J. Hydraul. Eng. 2008, 134, 466–474. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:4(466).
  • 44. Fu, G., Butler, D., Khu, S-T., Sun, S. Imprecise probabilistic evaluation of sewer flooding in urban drainage systems using random set theory. Water Resour Res, 2011, 47. https://doi.org/10.1029/2009WR008944.
  • 45. Brown, J.D, Spencer, T, Moeller, I. Modeling storm surge flooding of an urban area with particular reference to modeling uncertainties: A case study of Canvey Island, United Kingdom. Water Resour Res, 2007, 43. https://doi.org/10.1029/2005WR004597.
  • 46. Thorndahl, S. Stochastic long term modelling of a drainage system with estimation of return period uncertainty. Water Sci Technol, 2009, 59, 2331–2339. https://doi.org/10.2166/wst.2009.305.
  • 47. Fu, G., Butler, D. Copula-based frequency analysis of overflow and flooding in urban drainage systems. J. Hydrol., 2014, 510, 49–58. https://doi.org/10.1016/j.jhydrol.2013.12.006.
  • 48. Fatone, F., Szeląg, B., Kiczko, A., Majerek, D., Majewska, M., Drewnowski, J., Łagód, G. Advanced sensitivity analysis of the impact of the temporal distribution and intensity of rainfall on hydrograph parameters in urban catchments. Hydrol. Earth Syst. Sci., 2021, 25, 5493–5516, https://doi.org/10.5194/hess-25-5493-2021
  • 49. Chen, A.S., Leandro, J., Djordjevi´c, S. Modelling sewer discharge via displacement of manhole covers during flood events using 1D/2D SIPSON/P-DWave dual drainage simulations. Urban Water J., 2016, 13, 830–840. https://doi.org/10.1080/1573062X.2015.1041991.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc87f86a-0b22-4bd1-bb1a-229e2cf0c60b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.