PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structural health monitoring (SHM) methods in machine design and operation

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zastosowanie badań nieniszczących (SHM) w projektowaniu i eksploatacji maszyn
Języki publikacji
EN
Abstrakty
EN
The present paper is devoted to the discussion and review of the non-destructive testing methods mainly based on vibration and wave propagation. In the first part, the experimental methods of actuating and analyzing the signal (vibration) are discussed. The piezoelectric elements, fiber optic sensors and Laser Scanning Doppler Vibrometer (SLDV) method are described. Effective detecting of the flaws needs very accurate theoretical models. Thus, the numerical methods, e.g. finite element, spectral element method and numerical models of the flaws in isotropic and composite materials are presented. Moreover, the detection of the damage in structures, which are subjected to cyclic or static loads, is based on the analyzing of the change in natural frequency of the whole structure, the change of internal impedance of the material and the change in guided waves propagating through the investigated structure. All these cases are characterized in detail. At the end of this paper, several applications of the structural health monitoring systems in machine design and operation are presented.
PL
Obecnie prezentowana praca poświęcona jest zagadnieniom związanym z szeroko rozumianym pojęciem badań nieniszczących. Dotyczy to przede wszystkim metod opartych na analizie drgań jak również propagacji fal sprężystych w elementach konstrukcji maszyn. Pierwsza część pracy zawiera przegląd najczęściej wykorzystywanych typów wzbudników oraz czujników, a mianowicie przetworników piezoelektrycznych, włókien optycznych. Przegląd ten uzupełniono opisem zaawansowanej technologii pomiaru drgań przy wykorzystaniu technik laserowych. Zebrane w ten sposób dane muszą być następnie odpowiednio przetworzone tak, aby uzyskać informacje na temat występowania uszkodzeń, ich lokalizacji i rozmiaru. W tym celu niezbędne jest przygotowanie odpowiednich modeli teoretycznych opartych na technologii Metody Elementów Skończonych lub Elementów Spektralnych. Ponadto, należy również opracować i przetestować komputerowe modele uszkodzeń w materiałach izotropowych jak również kompozytowych. Istnienie uszkodzenia w materiale powodować może zmianę wartości częstotliwości drgań własnych oraz odpowiadających im form drgań, impedancji mechanicznej jak również zakłócenia w rozchodzeniu się fal sprężystych. Przypadki te omówiono szczegółowo w niniejszej pracy. Przegląd ten uzupełniono wybranymi przykładami praktycznego zastosowania powyższych technik kontroli stanu konstrukcji.
Rocznik
Strony
653--677
Opis fizyczny
Bibliogr 80 poz., fot., rys., tab.
Twórcy
autor
  • Institute of Machine Design, Faculty of Mechanical Engineering, Cracow University of Technology, al. Jana Pawła II 37, 31-864 Kraków, Poland
autor
  • Institute of Machine Design, Faculty of Mechanical Engineering, Cracow University of Technology, al. Jana Pawła II 37, 31-864 Kraków, Poland
autor
  • Institute of Machine Design, Faculty of Mechanical Engineering, Cracow University of Technology, al. Jana Pawła II 37, 31-864 Kraków, Poland
  • Institute of Machine Design, Faculty of Mechanical Engineering, Cracow University of Technology, al. Jana Pawła II 37, 31-864 Kraków, Poland
Bibliografia
  • [1] Achenbach J.D.: Wave Propagation in Elastic Solids, North-Holland Publishing Co., New York, NY, 1984.
  • [2] Allison S.G., Shams Q.A., Fox R.L., Fox C.L., Fox Chattin M.L.: Telescoping cylindrical piezoelectric fiber composite actuator assemblies, NASA Report, US-Patent-7, 732, 998, US-Patent-Appl-SN-11/462, 114, 2010.
  • [3] Alnefaie K.: Finite element modeling of composite plates with internal delamination. Composite Structure, Vol. 90, 2009, pp. 21-27.
  • [4] Ansari F.: State-of-the-art in the applications of fiber-optic sensors to cementitious composites, Cem. Concr. Compos. 19, 1997, pp. 3-19.
  • [5] Auld B.A.: Acoustic Fields and Waves in Solids, Vol. 1 and 2, Second edition; Kreiger Publishing Co., FL., 1990.
  • [6] Bar H.N., Bhat M.R., and Murthy C.R.L.: Parametric Analysis of Acoustic Emission Signals for Evaluating Damage in Composites Using a PVDF Film Sensor, Journal of Nondestructive Evaluation, Vol. 24, No. 4, December 2005, pp. 121-134.
  • [7] Barbero E.J.: Finite Element Analysis of Composite Materials. Taylor & Francis Group, 2008.
  • [8] Capineri L., Masotti L., Ferrari V., Marioli D., Taroni A. et al.: Comparisons between PZT and PVDF thick films technologies in the design of low-cost pyroelectric sensors, Rev. Sci. Instrum. 75, 2004, pp. 4906-4910; doi: 10.1063/1.1807002.
  • [9] Carlyle J.M.: Acoustic emission testing the F-111, NDT International, Vol. 22, Issue 2, April 1989, pp. 67-73.
  • [10] Chan T.H.T., Yu L., Tam H.Y., Ni Y.Q., Liu S.Y., Chung W.H., Cheng L.K.: Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: background and experimental observation, Eng. Struct. 28, 2006, pp. 648-659.
  • [11] Della Ch., Dongwei Shu: Free vibration analysis of composite beams with overlapping delaminations. European Journal of Mechanics A/Solids, Vol. 24, 2005, pp. 491-503.
  • [12] De Rosa I.M., Sarasini F.: Use of PVDF as acoustic emission sensor for in situ monitoring of mechanical behaviour of glass/epoxy laminates, Polymer Testing 29, 2010, pp. 749-758.
  • [13] Doebling S., Farrar C., Prime M., Daniel W.: Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review. LA-13070-MS, May, 1996.
  • [14] Dongwei Shu, Della Ch.: Free vibration analysis of composite beams with two non-overlapping delaminations. International Journal of Mechanical Sciences, Vol. 46, 2004, pp. 509-526.
  • [15] Doyle J.F.: A Spectrally Formulated Finite Elements for Longitudinal Wave Propagation. International Journal of Analytical and Experimental Modal Analysis, 1988, Vol. 3, pp. 1-5.
  • [16] Gebremichael Y.M., Li W., Boyle W.J.O., Meggit B.T., Grattan K.T.V., McKinley B., Fernando G.F., Kister G., Winter D., Canning L., Luke S.: Integration and assessment of fibre Bragg grating sensors in an all-fibre reinforced polymer composite road bridge, Sens. Actuators A 118, 2005, pp. 78-85.
  • [17] Giurgiutiu V.: Structural Health Monitoring with Piezoelectric Wafer Active Sensors, Elsevier, 2008.
  • [18] Gopalakrishnan S., Ruzzene M., Hanagud S.: Computational Techniques for Structural Health Monitoring, Springer-Verlag London Limited, 2011.
  • [19] Graff K.F.: Wave Motion in Elastic Solids, Dover Publications Inc., New York, 1991.
  • [20] Grondel S., Assaad J., Delebarre C., Moulin E.: Health monitoring of a composite wingbox structure, Ultrasonics, Volume 42, Issue 1-9, April 2004, pp. 819-824.
  • [21] Grosse C., McLaskey G., Bachmaier S., Glaser S.D., Krüger M.: A hybrid wireless sensor network for acoustic emission testing in SHM, Proceedings of SPIE – The International Society for Optical Engineering, Volume 6932, 2008.
  • [22] Heung Soo Kim, Chattopadhyay A., Ghoshal A.: Characterization of delamination effect on composite laminates using a new generalized layerwise approach. Computers and Structures, Vol. 81, 2003, pp. 1555-1566.
  • [23] Herath M.T., Bandyopadhyay K., Logan J.D.: Modelling of delamination damage in composite beams, 6th Australasian Congress on Applied Mechanics, ACAM 6, December 2010, Perth, Australia, pp. 12-15.
  • [24] High J., Wilkie.: Method of fabricating NASA-standard macro-fiber piezocomposite actuators, NASA/TM-2003-213427 ARL TR 2833, 2003.
  • [25] Honglei Guo, Gaozhi Xiao, Nezih Mrad, Jianping Yao: Fiber Optic Sensors for Structural Health Monitoring of Air Platforms, Sensors 11, 2011, pp. 3687-3705.
  • [26] Holroyd T.: The Acoustic Emission and Ultrasonic Monitoring Handbook, Coxmoor Publishing Company, Oxford, UK, 2001.
  • [27] Hyeung-Yun Kim, Woonbong Hwang: Effect of debonding on natural frequencies and frequency response functions of honeycomb sandwich beams. Composite Structures, Vol. 55, 2002, pp. 51-62.
  • [28] Kessler S., Spearing S., Atalla M., Cesnik C., Soutis C.: Damage detection in composite materials using frequency response methods. Composites: Part B, Vol. 33, 2002, pp. 87-95.
  • [29] Kędziora P.: Optimal design of PZT actuators and sensors in composite structural elements, Key Engineering Materials, Vol. 542, 2013, pp. 59-73.
  • [30] Kędziora P., Barski M., Chwał M.: Piezoelectric transducers, Key Engineering Materials, Vol. 542, 2013, pp. 75-80.
  • [31] Kim-Ho Ip, Ping-Cheung Tse: Locating damage in circular cylindrical composite shells based on frequency sensitivities and mode shape. European Journal of Mechanics A/Solids, Vol. 21, 2002, pp. 615-628.
  • [32] Kino C.S.: Acoustic Waves: Devices, Imaging and Digital Signal Processing, Prentice Hall Inc., N.J., 1987.
  • [33] Kirikera G.R., Shinde V., Schulz M.J., Ghoshal A., Sundaresan M., Allemang R.: Damage localisation in composite and metallic structures using a structural neural system and simulated acoustic emissions, Mechanical Systems and Signal Processing 21, 2007, pp. 280-297.
  • [34] Kirikera G.R., Shinde V., Schulz M.J., Ghoshal A., Sundaresan M.J., Allemang R.J. and Lee J.W.: A Structural Neural System for Real-time Health Monitoring of Composite Materials, Structural Health Monitoring, 2008, pp. 65-83.
  • [35] Kolousek V.: Anwendung des Gesetzes der virtuellen Verschiebungen und des Reziprozitatssatzes in der Stabwerksdynamic. Ingenieur – Archiv, 1941, Vol. 12, pp. 363-370.
  • [36] Lee U., Kim J., Leung A.: The Spectral Element Method in Structural Dynamics. The Shock and Vibration Digest, 2000, Vol. 32, No. 6, pp. 451-465.
  • [37] Lee U.: Spectral Element Method in Structural Dynamics. Singapore, John Wiley & Sons (Asia) Pte Ltd, 2009.
  • [38] Lin Y.B., Pan C.L., Kuo Y.H., Chang K.C.: Online monitoring of highway bridge construction using fiber Bragg grating sensors, Smart Mater. Struct. 14, 2005, pp. 1075-1082.
  • [39] López-Higuera J.M., Cobo L.R., Incera A.Q., Cobo A.: Fiber Optic Sensors in Structural Health Monitoring, Journal of Lightwave Technology, Vol. 29, No. 4, February 15, 2011, pp. 587-608.
  • [40] Luo H., Hanagud S.: PVDF film sensor and its applications in damage detection, J. Aerospace Eng. 12(1), 1999, pp. 23-30.
  • [41] Maaskant R., Alavie A.T., Measures R.M., Tadroos G., Rizkalla S.H., Guha-Thakurta A.: Fibre optic Bragg grating sensors for bridge monitoring, Cem. Concr. Compos. 19, 1997, pp. 21-33.
  • [42] Madenci E., Guven I.: The Finite Element Method and Application in Engineering Using ANSYS, Springer Science + Business Media, 2006.
  • [43] Majumder M., Gangopadhyay T.K., Chakraborty A.K., Dasgupta K., Bhattacharya D.K.: Fibre Bragg gratings in structural health monitoring-Present status and applications, Sensors and Actuators A: Physical, Vol. 147, Issue 1, 15 September 2008, pp. 150-164.
  • [44] Miklowitz J.: The Theory of Elastic Waves and Waveguides, North Holland Publishing Co., New York, 1978.
  • [45] Muc A., Stawiarski A.: Identification of damages in composite multilayered cylindrical panels with delaminations, Composite Structures 94(5), 2012, pp. 1871-1879.
  • [46] Muravin G.: Inspection, Diagnostics and Monitoring of Construction Materials and Structures by the Acoustic Emission Methods, Minerva Press, London, UK, 2000.
  • [47] Naus D.J.: Inspection of nuclear power plant structures – overview of methods and related applications, Oak Ridge National Laboratory, 2009,ORNL/TM-2007/19.
  • [48] Nayfeh A.H.: Wave Propagation in Layered Anisotropic Media With Applications to Composites, North-Holland, Elsevier Science B.V., The Netherlands, 1995.
  • [49] Ostachowicz W., Kudela P.: Guided wave propagation methods in composite structures for damage identification. Proceedings of the IV ECCOMAS Thematic Conference on Smart Structures and Materials, 2009, pp. 71-90.
  • [50] Philen D., White I., Kuhl J., Mettler S.: Single-mode fiber OTDR: Experiment and theory. IEEE J. Quant. Elect. 18, 2003, pp. 1499-1508.
  • [51] Przemieniecki J.S.: Theory of Matrix Structural Analysis, New York, McGraw-Hill, 1968.
  • [52] Ramtekkar G.S.: Free vibration analysis of delaminated beams using mixed finite element model. Journal of Sound and Vibration, Vol. 328, 2009, pp. 428-440.
  • [53] Rezaei D., Taheri F.: A novel application of a laser Doppler vibrometer in a health monitoring system, Journal of Mechanics of Materials and Structures, Vol. 5, No. 2, 2010, pp. 289-304.
  • [54] Romanowicz P.: Application of selected multiaxial high-cycle fatigue criteria to rolling contact problems, Key Engineering Materials Vol. 542, 2013, pp. 157-170.
  • [55] Rose J.L.: Ultrasonic Waves in Solid Media, Cambridge University Press, 1999.
  • [56] Rose J.L.: A baseline and vision of ultrasonic guided wave inspection potential, J. Pressure Vessel Technol., 124, 2002, pp. 273-282.
  • [57] Rumsey M.A., Paquette J.A.: Structural health monitoring of wind turbine blades, Proceedings of SPIE – The International Society for Optical Engineering, Vol. 6933, 2008, Article number 69330E.
  • [58] Schulz W.L., Conte J.P., Udd E., Seim J.M.: Static and dynamic testing of bridges and highways using long-gage fibre Bragg grating based strain sensors, Proc. SPIE 4202, 2000.
  • [59] Scott I.G.: Basic Acoustic Emission, Gordon and Breach Science Publishers, New York, NY, 1991.
  • [60] Sohn H., Farrar C.R., Hemez F.M., Shunk D.D., Stinemates D.W., Nadler B.R., Czarnecki J.J.: A Review of Structural Health Monitoring Literature: 1996-2001, Los Alamos National Laboratory Report, LA-13976-MS, 2004.
  • [61] Staszewski W.J., Boller C., Tomlinsos G.R.: Health monitoring of aeorospace structures, John Wiley & Sons Ltd, England, 2004.
  • [62] Stawiarski A., Muc A.: Forced vibration of composite cylindrical panels with delaminations, Proceedings of Stability of Structures, XIIIth Symposium, 2012, pp. 609-616.
  • [63] Stawiarski A., Muc A., Kędziora P.: Damage detection, localization and assessment in multilayered composite structure with delaminations, Key Engineering Materials Vol. 542, 2013, pp. 193-204.
  • [64] Su Z., Ye L., Lu Y.: Guided Lamb waves for identification of damage in composite structures: A review, Journal of Sound and Vibration 295, 2006, pp. 753-780.
  • [65] Sundaresan M.J., Pai P.F., Ghosal A., Schulz M.J., Ferguson F., Chung J.H.: Methods of distributed sensing for health monitoring of composite material structures, Composites: Part A 32, 2001, pp. 1357-1374.
  • [66] Szybiński B., Romanowicz P., Zieliński A.P.: Numerical and experimental analysis of stress and strains in flat ends of high-pressure vessels, Key Engineering Materials Vol. 490, 2012, pp. 226-236.
  • [67] Tae-Chul Moon, Hyeung-Yun Kim, Woonbong Hwang: Natural-frequency reduction model for matrix-dominated fatigue damage of composite laminates. Composite Structures, Vol. 62, 2003, pp. 19-26.
  • [68] Takeda S., Aoki Y., Ishikawa T., Takeda N., Kikukawa H.: Structural health monitoring of composite wing structure during durability test, Composite Structures, Volume 79, Issue 1, June 2007, pp. 133-139.
  • [69] Taoling Yang, Zheng Li, Wang J., Tong L.: Overall moduli and natural frequencies of composite laminates containing multiple interlaminar transverse cracks. Composite Structures, Vol. 66, 2003, pp. 223-230.
  • [70] Tennyson R.C., Mufti A.A., Rizkalla S., Tadros G., Benmokrane B.: Structural health monitoring of innovative bridges in Canada with fiber optic sensors, Smart Mater. Struct. 10, 2001, pp. 560-573.
  • [71] Theory Reference for ANSYS and ANSYS Workbench, ANSYS Release 12.
  • [72] Viktorov I.A.: Rayleigh and Lamb Waves – Physical Theory and Applications, Plenum Press, New York, NY, 1967.
  • [73] Wei Z., Yam L.H., Cheng L.: Detection of internal delamination in multi-layer composites using wavelet packets combined with modal parameter analysis. Composite Structure, Vol. 64, 2004, pp. 377-387.
  • [74] Wild G., Hinckley S.: Acousto-Ultrasonic optical fiber sensors: Overview and state-of-the-art. IEEE Sens. J. 8, 2008, pp. 1184-1193.
  • [75] Worden K., Farrar C.R., Manson G., Park G.: A fundamental axioms of structural health monitoring, Proc. R. Soc. A 463, 2007, pp. 1639-1664.
  • [76] Worlton D.C.: Experimental confirmation of Lamb waves at megacycle frequencies, J. Appl. Physics, 32, 1961, pp. 967-971.
  • [77] Ye L., Su Z.: Identification of damage using Lamb waves, Springer, 2009.
  • [78] Yoshino T., Kurosawa K., Itoh K., Ose T.: Fiber-optic Fabry-Perot interferometer and its sensor applications. IEEE J. Quant. Elect. 1982, 4, pp. 626-665.
  • [79] Zienkiewicz O.C., Taylor R.L.: The Finite Element Method, Butterworth-Heineman, 2000.
  • [80] Zou Y., Tong L., Steven G.: Vibration-based model-dependent damage (delamination) identification for composite structures – a review. Journal of Sound and Vibration, Vol. 230, No. 2, 2000, pp. 357-378.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc87cdc8-92be-4c98-b2ef-dbbf0d294af8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.