Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The density, compressive strength, and thermal insulation properties of fly ash geopolymer paste are reported. Novel insulation material of glass bubble was used as a replacement of fly ash binder to significantly enhance the mechanical and thermal properties compared to the geopolymer paste. The results showed that the density and compressive strength of 50% glass bubble was 1.45 g/cm3 and 42.5 MPa, respectively, meeting the standard requirement for structural concrete. Meanwhile, the compatibility of 50% glass bubbles tested showed that the thermal conductivity (0.898 W/mK), specific heat (2.141 MJ/m3 K), and thermal diffusivity (0.572 mm2 /s) in meeting the same requirement. The improvement of thermal insulation properties revealed the potential use of glass bubbles as an insulation material in construction material.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
221--226
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wzory
Twórcy
- Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolyme & Green Technology (CEGeoGTech), Perlis, Malaysia
- Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolyme & Green Technology (CEGeoGTech), Perlis, Malaysia
- Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Perlis, Malaysia
autor
- Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolyme & Green Technology (CEGeoGTech), Perlis, Malaysia
- Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Perlis, Malaysia
autor
- Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolyme & Green Technology (CEGeoGTech), Perlis, Malaysia
- Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Perlis, Malaysia
- Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolyme & Green Technology (CEGeoGTech), Perlis, Malaysia
- Universiti Malaysia Perlis (UniMAP), Faculty of Mechanical Engineering Technology, Perlis, Malaysia
autor
- Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolyme & Green Technology (CEGeoGTech), Perlis, Malaysia
autor
- Universiti Tun Hussein Onn Malaysia, Faculty of Civil and Environmental Engineering, Johor, Malaysia
autor
- Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iasi, Iasi, Romania
autor
- Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolyme & Green Technology (CEGeoGTech), Perlis, Malaysia
- Universiti Malaysia Perlis (UniMAP), Faculty of Mechanical Engineering Technology, Perlis, Malaysia
Bibliografia
- [1] J.Z. Liang, F.H. Li, Polym. Test. 25 (4), 527-531 (2006).
- [2] D. Oreshkin, V. Semenov, T. Rozovskaya, Procedia Eng. 153, 638-643 (2016).
- [3] S. Ren et al., Mater. Sci. Eng. A 674, 604-614 (2016).
- [4] S. Shahidan et al., MATEC Web Conf. 103, 1-9 (2017).
- [5] C. Swetha, R. Kumar, Mater. Des. 32 (8-9), 4152-4163 (2011).
- [6] C.Y. Ueki Peres, Mater. Sci. Forum 820, 509-514 (2015).
- [7] K.C. Yung, B.L. Zhu, T.M. Yue, C.S. Xie, Compos. Sci. Technol. 69 (2), 260-264 (2009).
- [8] N.F. Shahedan, M.M.A.B. Abdullah, N. Mahmed, A. Kusbiantoro, S. Tammas-Williams, L.Y. Li, I.H. Aziz, P. Vizureanu, J.J. Wysłocki, K. Błoch, M. Nabiałek, Materials 14, 809 (2021).
- [9] T.S. Yun, Y.J. Jeong, T.-S. Han, K.-S. Youm, Energy Build. 61, 125-132 (2013).
- [10] Q.-Hu. Q. Bing Liu, Hui Wang, Materials (Basel) 11, 133, 1-16 (2018).
- [11] H. Wang, F. Hou, X. Zhao, American Journal of Materials Science 4 (1), 1-11 (2015).
- [12] A. Hanif, S. Diao, Z. Lu, T. Fan, Z. Li, Constr. Build. Mater. 116, 422-430 (2016).
- [13] N. Ariffin, M.M.A.B. Abdullah, P. Postawa, S.Z.A. Rahim, M.R.R.M.A. Zainol, R.P. Jaya, A. Śliwa, M.F. Omar, J.J. Wysłocki, K. Błoch, M. Nabiałek, Materials 14, 814 (2021).
- [14] E. Nazarimofrad, F. Uddin, A. Shaikh, M. Nili, J. Sustain. Cem. 6, 1-15 (2016).
- [15] A.U. Zaman, J. Clean. Prod. 66, 407-419 (2014).
- [16] J. Xie, J. Wang, B. Zhang, C. Fang, L. Li, Constr. Build. Mater. 204, 384-398 (2019).
- [17] D. Van Dao, H.B. Ly, S.H. Trinh, T.T. Le, B.T. Pham, Materials (Basel) 12 (6), 983 (2019).
- [18] D.D.B. Nergis, M.M.A.B. Abdullah, A.V. Sandu, P. Vizureanu, Materials (Basel) 13 (2), 243 (2020).
- [19] G. Roviello et al., Materials (Basel) 9 (6), 461 (2016).
- [20] J. Xie, J. Zhao, J. Wang, C. Wang, P. Huang, C. Fang, Materials (Basel) 12 (8), 1247 (2019).
- [21] J. Xie, J. Wang, R. Rao, C. Wang, C. Fang, Composites Part B: Engineering 164, 179-190 (2019).
- [22] S. Sasui, G. Kim, J. Nam, T. Koyama, S. Chansomsak, Materials (Basel) 13 (1), 59 (2020).
- [23] X.Y. Zhuang et al., J. Clean. Prod. 125, 253-267 (2016).
- [24] W. Ten Kuo, M.Y. Liu, C.U. Juang, Materials (Basel) 12 (10), 1697 (2019).
- [25] U.S. Agrawal, S.P. Wanjari, D.N. Naresh, Constr. Build. Mater. 150, 681-688 (2017).
- [26] P. Prochon, Z. Zhao, L. Courard, T. Piotrowski, F. Michel, A. Garbacz, Materials (Basel) 13 (5), 1033 (2020).
- [27] L. Biondi, M. Perry, C. Vlachakis, Z. Wu, A. Hamilton, J. McAlorum, Materials (Basel) 16 (6), 923 (2019).
- [28] W.W.A. Zailani, M.M.A.B. Abdullah, M.F. Arshad, R.A. Razak, M.F.M. Tahir, R.R.M.A. Zainol, M. Nabialek, A.V. Sandu, J.J. Wysłocki, K. Błoch, Materials 14, 56 (2021).
- [29] O.H. Li, L. Yun-Ming, H. Cheng-Yong, R. Bayuaji, M.M.A.B. Abdullah, F.K. Loong, T.A. Jin, N.H. Teng, M. Nabiałek, B. Jeż, N.Y. Sing, Magnetochemistry 7 (1), 9 (2021).
- [30] J. Temuujin, A. Minjigmaa, W. Rickard, M. Lee, I. Williams, A. van Riessen, Appl. Clay Sci. 46 (3), 265-270 (2009).
- [31] J. Temuujin, A. Minjigmaa, W. Rickard, M. Lee, I. Williams, A. van Riessen, J. Hazard. Mater. 180 (1-3), 748-752 (2010).
- [32] A.M.M. Al Bakri, H. Kamarudin, O.A.K.A. Karem, C.M. Ruzaidi, A.R. Rafiza, M.N. Norazian, Appl. Mech. Mater. 110-116, 734-739 (2012).
- [33] A.R. Rafiza, Y. Zarina, A.M. Mustafa Al Bakri, H. Kamarudin, M. Bnhussain, Aci Mater. J. 109 (5), 503-508 (2012).
- [34] Z. Zhang, J.L. Provis, A. Reid, H. Wang, Cem. Concr. Compos. 62, 97-105 (2015).
- [35] ASTM C39. Standard test method for compressive strength of hydraulic cement mortars, American Society for Testing and Materials, 2018.
- [36] ASTM C188. Standard test method for density of hydraulic cement, American Society for Testing and Materials, 2018.
- [37] ASTM C168-97. Standard terminology relating to thermal insulating materials, American Society for Testing and Materials, 1997.
- [38] M. Łach, K. Korniejenko, J. Mikuła, Procedia Eng. 151, 410-416 (2016).
- [39] M.I. Khan, K. Azizli, S. Sufian, Z. Man, A.A. Siyal, H. Ullah, AIP Conf. Proc. 1669, 020065 (2015).
- [40] A.R.R. Kalaiyarrasi, P. Partheeban, Int. J. Emerg. Technol. Adv. Eng. 7 (6), 133-135 (2017).
- [41] B. Nagy, S.G. Nehme, D. Szagri, Energy Procedia 78, 2742-2747 (2015).
- [42] D. Bentz, M. Peltz, A. Durán-Herrera, P. Valdez, C. Juárez, J. Build. Phys. 34 (3), 263-275 (2011).
- [43] Y.A. Cengel, Heat Mass Transfer A Practical Approach 3rd Edition Cengel, The Unites States, McGraw-Hill., vol. Third edit (2006).
- [44] E. Bwayo, S.K. Obwoya, J. Ceram. 2014, 1-6 (2014).
Uwagi
1. The authors thank the Center of Excellent Geopolymer & Green Technology (CEGeoGTech), UniMAP, for its financial support. The authors would also like to thank the European Union (EU) for the support gained from “Partnership for Research in Geopolymer Concrete” in the framework of Marie Skłodowska-Curie RISE Grant Agreement (689857H2020-MSCARISE-2015).
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc86b05d-8bb2-4e48-ac18-bb3ab62ed105