PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Method for determining the Air Change Effectiveness of the auxiliary forcing ventilation system in underground mines using CFD software

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Auxiliary forcing ventilation system is the most common air distribution system of the development headings in underground mines. This paper reports the development of numerical analysis for calculating the Air Change Effectiveness (ACE) of ventilation performance for auxiliary forcing ventilation system in underground mines. The methodology presented in this paper will be demonstrated through Computational Fluid Dynamics (CFD) modelling and calculated in accordance with ASHRAE F25-1997 methodology. Local age, Mean Age of Air (MAA) and ACE were calculated in three scenarios using CFD modelling to study the ventilation performance. ACE was calculated at locations in the development headings occupied space, based on the MAA from the same ventilation system parameters in three different scenarios. Simulation results indicate that ACE is influenced due to the involvement of objects in the development heading that can reduce the effective volume of the zone. This study provides some new ideas for measuring ACE which can provide better auxiliary ventilation system in underground mines. The proposed methodology could be applied as guidance for design and setup of auxiliary ventilation systems. Results from this CFD modelling will be used for extensive validation study which purpose will be to prove the accuracy of the methodology and, if necessary, to improve it.
Czasopismo
Rocznik
Tom
Strony
161--178
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
  • Faculty of Natural and Technical Sciences, Mining Engineering, "Goce Delchev" University, P.O. Box 201, 2000 Shtip, Macedonia
  • Faculty of Natural and Technical Sciences, Mining Engineering, "Goce Delchev" University, P.O. Box 201, 2000 Shtip, Macedonia
autor
  • Faculty of Natural and Technical Sciences, Mining Engineering, "Goce Delchev" University, P.O. Box 201, 2000 Shtip, Macedonia
  • Faculty of Natural and Technical Sciences, Mining Engineering, "Goce Delchev" University, P.O. Box 201, 2000 Shtip, Macedonia
Bibliografia
  • AMAI H., NOVOSELAC A., 2016, Experimental study on air change effectiveness in mixing ventilation, Building and Environment, Vol. 109, pp. 101–111, https://doi.org/10.1016/j.buildenv.2016.09.015.
  • AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS, 1997, ASHRAE handbook 1997: Fundamentals, Chapter 25, Atlanta, pp. 492–520.
  • ANSYS ACADEMIC RESEARCH., 2015, ANSYS Fluent Theory Guide, Release 15.0, Help System, Chapter 4, pp.39-177.
  • ANSYS FLUENT 12.0, UDF Manual, Release 12.0, ANSYS, Inc., January 26, 2009, Chapter 2, pp. 37–273.
  • BEARG D.W., 1993, Indoor Air Quality and HVAC Systems, Chapter4, Lewis Publishers, UK, pp. 61–81.
  • BURATTI C., MARIANI R., MORETTI E., 2011, Mean age of air in a naturally ventilated office: Experimental data and simulations, Energy and Buildings, Vol. 43, Issue 8, pp. 2021–2027, https://doi.org/10.1016/j.enbuild.2011.04.015.
  • DAGHIGH R., SOPIAN K., 2009, The Impact of Air Exchange Effectiveness on Thermal Comfort in an Air-Conditioned Office, American Journal of Applied Sciences, 6 (11), pp. 1973–1980.
  • DE SOUZA E., 2004, Auxiliary ventilation operation practices, Proceedings of the 10th U.S., North American Mine Ventilation Symposium, Leiden, Netherlands: Balkema, pp. 341–348.
  • FEDERSPIEL C., 1999, Air-Change Effectiveness: Theory and Calculation Methods, Indoor Air, 9, pp. 47–56.
  • FISK W.J., FAULKNER D., SULLIVAN D., BAUMAN F., 1997, Air change effectiveness and pollutant removal efficiency during adverse mixing conditions, Indoor Air, Vol. 7, Issue 1, pp. 55–63.
  • HAN H., CHOI S.H., LEE W.W., 2002, Distribution of Local Supply and Exhaust Effectiveness according to Room Airflow Patterns, International Journal of Air conditioning and Refrigeration, Vol. 10, No. 4, pp. 177–183.
  • HOU J., SUN Y., KONG X., WANG P., ZHANG Q., SUNDELL J., 2015, Single and Multiple Zone Methods to Calculate Air Change Rate in Apartments, Procedia Engineering, Vol. 121, pp. 567–572, https://doi.org/10.1016/j.proeng.2015.08.1035.
  • JONES P.J., WHITTLE G.E., 1992, Computational fluid dynamics for building air flow prediction – current status and capabilities, Building and Environment, Vol. 27, Issue 3, pp. 321–338, https://doi.org/10.1016/0360-1323(92)90033-L.
  • MCPHERSON M.J., 1993, Subsurface Ventilation and Environmental Engineering, Chapman & Hall, London, pp. 21–25.
  • MONTEIRO J., CASTRO O., 2014, Comparison of Contaminant Removal Effectiveness and Air Change Efficiency as Indicator of Air Diffusion Quality, The 13th International Conference on Indoor Air Quality and Climate at: Hong Kong, Vol. 4, pp. 392–400.
  • NOVOSELAC A., SREBRIC J., 2003, Comparison of air exchange efficiency and contaminant removal effectiveness as IAQ indices, Transactions-American Society of Heating Refrigerating and Air Conditioning Engineers, Vol. 109, Issue 2, pp. 339–349.
  • PADILLA-MARCOS M.Á., MEISS A., FEIJÓ-MUÑOZ J., 2017, Proposal for a Simplified CFD Procedure for Obtaining Patterns of the Age of Air in Outdoor Spaces for the Natural Ventilation of Buildings, Energies, Vol. 10, Issue 9, pp. 1252–1269, https://doi.org/10.3390/en10091252.
  • ROULET C.A., 2008, Ventilation and Airflow in Buildings: Methods for Diagnosis and Evaluation, Chapter 4, Earthscan, UK, pp. 39–49.
  • SANDBERG M., 1981, What is Ventilation Efficiency, Building and Environment, Vol. 16, No. 2, pp. 123–135.
  • STOKES A.W., KENNEDY D.J., HARDCASTLE S.G., 1987, A real-time tracer gas analyzer – an investigational tool for mine ventilation studies, Mining Science and Technology, Vol. 5, Issue 2, pp. 187–196, https://doi.org/10.1016/S0167-9031(87)90405-1.
  • TOMASI R., KRAJČÍK M., SIMONE A., OLESEN B.W., 2013, Experimental evaluation of air distribution in mechanically ventilated residential rooms: Thermal comfort and ventilation effectiveness, Energy and Buildings, Vol. 60, pp. 28–37, https://doi.org/10.1016/j.enbuild.2013.01.003.
  • WIDIATMOJO A., SASAKI K., MATSUMURA M., SUGAI Y., 2014, Laboratory Experiment of Air Residence Time in a Side Rectangular Cavity, Advanced Chemical Engineering Research, Vol. 3, pp. 27–33.
  • XIANTING L., DONGNING L., CHUNPENG D., 2003a, An algorithm for calculating fresh air age in central ventilation system, Science in China Series E: Technological Sciences, Vol. 46, Issue 2, pp. 182–190, https://doi.org/10.1007/BF03039577.
  • XIANTING L., DONGNING L., XUDONG Y., JIANRONG Y., 2003b, Total air age: an extension of the air age concept, Building and Environment, Vol. 38, Issue 11, pp. 1263–1269, https://doi.org/10.1016/S0360- 1323(03)00133-1.
  • XING H., HATTON A., AWBI H.B., 2001, A study of the air quality in the breathing zone in a room with displacement ventilation, Building and Environment, Vol. 36, Issue 7, pp. 809–820, https://doi.org/ 10.1016/S0360-1323(01)00006-3.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc864f3e-70d9-4e88-9fab-bda45eaecf03
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.