PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A review on the use of geoelectrical methods for characterization and monitoring of contaminant plumes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Geophysical characterization of contaminated sites is an important procedure in pre- and post-site remediation. It has been carried out in several contaminated sites, irrespective of differences in site geology, nature of contaminants, and prevailing hydrological conditions. Electrical prospecting methods are the most used geophysical techniques for contaminant plume mapping. Due to this widespread use, there is an increasing number of literature on the use of electrical methods directed toward contaminant plume mapping. Yet, it lacks a comprehensive framework in literature that synthesizes the methods’ concepts, applications, and limitations. In this review, we summarized the use of electrical methods (electrical resistivity, self-potential, and induced polarization) in mapping contaminant plumes and provided a synthesis of concepts, applications, and limitations. The advantages, drawbacks, and the solutions achieved so far were emphasized in this review. Some of the advantages are that electrical methods are faster, cheaper, noninvasive and provide continuous images of contaminant plumes when compared to the traditional techniques. The drawbacks highlighted include the non-uniqueness of the vertical electrical sounding (VES), distortion effect of the 2D electrical resistivity tomography (ERT) and huge cost of 3D ERT data acquisition. We also highlighted other geophysical methods that could be used to map contaminant plumes. Conclusively, this review paper identified future research direction and offers insight into emerging issues associated with these techniques for better modeling of contaminated sites.
Czasopismo
Rocznik
Strony
2099--2117
Opis fizyczny
Bibliogr. 134 poz.
Twórcy
  • Boone Pickens School of Geology, Oklahoma State University, Stillwater, OK 74078, USA
  • Department of Geosciences, Georgia State University, Atlanta, GA 30302, USA
  • Department of Geophysics, Federal University Oye-Ekiti, Oye, Ekiti State, Nigeria
Bibliografia
  • 1. Abreu AE, Gandolfo O, Vilar O (2016) Characterizing a Brazilian sanitary landfill using geophysical seismic techniques. Waste Manag 53:116–127
  • 2. AGI (2016) https://www.agiusa.com/1d-resistivity-survey-vertical-electrical-sounding
  • 3. Aizebeokhai AP (2010) 2D and 3D geoelectrical resistivity imaging: Theory and field design. Sci Res Essays 5(23):3592–3605
  • 4. Aizebeokhai AP, Olayinka AI (2010) Anomaly effects of arrays for 3d geoelectrical resistivity imaging using orthogonal or parallel 2d profiles. Afr J Environ Sci Technol 4:454–464
  • 5. Aizebeokhai AP, Olayinka AI, Singh VS (2010) Application of 2D and 3D geoelectrical resistivity imaging for engineering site investigation in a crystalline basement terrain, southwestern Nigeria. J Environ Earth Sci 61(7):1481–1492
  • 6. Al-Garni M (2009) Geophysical investigations for groundwater in a complex subsurface terrain, Wadi Fatima, KSA: A case history. Jordan J Civil Eng. 3:118–136
  • 7. Ali NAM, Hamzah U, Sulaiman MAS (2013) International Laboratory Study of Contaminants Migration Pattern in Soil Using 2D Electrical Resistivity Tomography J Eng Res Technol (IJERT) 2(12) December 2013
  • 8. Al-Menshed FH (2011) Evaluation of resistivity method in delineation ground water hydrocarbon contamination southwest of Karbala city. PhD Thesis, Dept. of Geology, College of Science, University of Baghdad, p 210
  • 9. Amirkhani SF, Doulati AF, Moradzadeh A, Arab-Amiri AR (2013) Investigating the source of contaminated plumes downstream of the Alborz Sharghi coal washing plant using EM34 conductivity data, VLF-EM, and DC-resistivity geophysical methods. Explor Geophys 44(1):16–24
  • 10. Aziz NA, Abdulrazzaq ZT, Agbasi OE (2019) Mapping of subsurface contamination zone using 3D electrical resistivity imaging in Hilla city. Iraq Environ Earth Sci 78:502. https://doi.org/10.1007/s12665-019-8520-9
  • 11. Bassuk N, Grabosky J, Mucciardi A, Raffel G (2011) Ground penetrating radar accurately locates tree roots in two soil media under pavement. Arboricult Urban for 37:160–166
  • 12. Bentley LR, Gharibi M (2004) Two- and three-dimensional electrical resistivity imaging at a heterogeneous remediation site. Geophysics. https://doi.org/10.1190/1.1759453
  • 13. Bichet V, Grisey E, Aleya L (2016) Spatial characterization of leachate plume using electrical resistivity tomography in a landfill composed of old and new cells (Belfort, France). Eng Geol 211:61–73. https://doi.org/10.1016/j.enggeo.2016.06.026
  • 14. Binley A, Hubbard SS, Huisman JA, Revil A, Robinson DA, Singha K, Slater LD (2015) The Emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resour Res 51:3837–3866. https://doi.org/10.1002/2015WR017016
  • 15. Bogan E, Doina S, Daniela V (2015) The impact of anthropogenic activities on components of the natural environment of the Titu Plain. GEOREVIEW: Scientific Annals of Stefan cel Mare University of Suceava. Geography Series. 24. https://doi.org/10.4316/GEOREVIEW.2014.24.1.170.
  • 16. Cassiani G, Medina MA (1997) Incorporating auxiliary geophysical data into ground-water estimation. Ground Water 35(1):79–91
  • 17. Cassiani G, Kemna A, Villa A, Zimmermann E (2009) Spectral induced polarization for the characterization of free-phase hydrocarbon contamination of sediments with low clay content. Near Surface Geophys. https://doi.org/10.3997/1873-0604.2009028
  • 18. Cassiani G, Binley A, Kemna A, Wehrer M, Orozco AF, Deiana R, Boaga J, Rossi M, Dietrich P, Werban U (2014) Noninvasive characterization of the Trecate (Italy) crude-oil contaminated site: links between contamination and geophysical signals. Environ Sci Pollut R 21(15):8914–8931. https://doi.org/10.1007/s11356-014-2494-7
  • 19. Castelluccio M, Agrahari S, De Simone G, Pompilj F, Lucchetti C, Sengupta D, Tuccimei P (2018) Using a multi-method approach based on soil radon deficit, resistivity, and induced polarization measurements to monitor non-aqueous phase liquid contamination in two study areas in Italy and India. Environ Sci Pollut Res 25(13):12515–12527
  • 20. Chambers JE, Ogilvy RD, Kuras O, Cripps JC, Meldrum PI (2002) 3D electrical imaging of known targets at a controlled environmental test site. Environ Geol 41(6):690–704. https://doi.org/10.1007/s00254-001-0452-4
  • 21. Chávez RE, Tejero A, Cifuentes-Nava G, Hernández E, Aguilar D (2015) Imaging fractures beneath a residential com-plex using novel 3-D electrical resistivity arrays. J Environ Eng Geophys 20(2):219–233. https://doi.org/10.2113/JEEG20.3.219
  • 22. Choudhury K, Saha DK, Chakraborty P (2001) Geophysical study for saline water intrusion in a coastal alluvial terrain. J Appl Geophys 46:189–200. https://doi.org/10.1016/S0926-9851(01)00038-6
  • 23. Clément R, Descloitres M, Günther T, Ribolzi O, Legchenko A (2009) Influence of shallow infiltration on time-lapse ERT: experience of advanced interpretation. Comput Rendus Geosci 341:886–898
  • 24. Clément R, Descloitres M, Günther T, Oxarango L, Morra C, Laurent JP, Gourc JP (2010) Improvement of electrical resistivity tomography for leachate injection monitoring. Waste Manag 30(3):452–464. https://doi.org/10.1016/j.wasman.2009.10.002
  • 25. Dahlin T, Zhou B (2004) A numerical comparison of 2D resistivity imaging with ten electrode arrays. Geophys Prospect 52:379–398
  • 26. Dahlin T, Bernstone C, Loke MH (2002) A 3-D resistivity investigation of a contaminated site at Lernacken. Swed Geophys 67(6):1692–1700. https://doi.org/10.1190/1.1527070
  • 27. Day-Lewis FD, Slater LD, Robinson J, Johnson CD, Terry N, Werkema D (2017) An overview of geophysical technologies appropriates for characterization and monitoring at fractured-rock sites. J Environ Manag 204:709
  • 28. De Iaco R, Horstmeyer H, Green A (1997) High-resolution, high-fold seismic reflection profile across a landfill. In: 3rd EEGS Meeting. European Association of Geoscientists & Engineers
  • 29. Descloitres M, Ruiz L, Sekhar M, Legchenko A, Braun JJ, Kumar MSM, Subramanian S (2008) Characterization of seasonal local recharge using electrical resistivity tomography and magnetic resonance sounding. Hydrol Process 22(2008):384–394
  • 30. Doussan C, Jouniaux L, Thony JL (2002) Temporal variations of SP and unsaturated water flow in loam and clay soils: a seasonal field study. J Hydrol 267:173–185
  • 31. Emujakporue GO (2016) Self-potential investigation of contaminants in a dumpsite, University of Port Harcourt. Nigeria 57:140–148
  • 32. Essaid HI, Bekins BA, Cozzarelli IM (2015) Organic contaminant transport and fate in the subsurface: evolution of knowledge and understanding. Water Resour Res 51(7):4861–4902. https://doi.org/10.1002/2015WR017121
  • 33. Fargier Y, Lopes SP, Fauchard C, François D, COTE P, (2014) DC-Electrical resistivity imaging for embankment dike investigation: a 3d extended normalization approach. J Appl Geophys. https://doi.org/10.1016/j.jappgeo.2014.02.007
  • 34. Fatbardha V, Fatbardha C, Piro L (2010) Geochemical geophysical studies tecnogen pollution in Porto Romano, Albania, and their integration in GIS. J Int Environ Appl Sci 5(2):264–271
  • 35. Fernandez PM, Bloem E, Binley A, Philippe R, French H (2019) Monitoring redox sensitive conditions at the groundwater interface using electrical resistivity and self-potential. J Contam Hydrol 226:103517. https://doi.org/10.1016/j.jconhyd.2019.103517
  • 36. Fox RW (1830) On the electromagnetic properties of metalliferous veins in the mines at Cornmall. Proc R Soc Lond 2:411
  • 37. Frid V, Liskevich G, Doudkinski D, Korostishevsky N (2008) Evaluation of landfill disposal boundary by means of electrical resistivity imaging. Environ Geol 53:1503–1508
  • 38. Gaël D, Tanguy R, Nicolas M, Nguyen F (2017) Assessment of multiple geophysical techniques for the characterization of municipal waste deposit sites. J Appl Geophys. https://doi.org/10.1016/j.jappgeo.2017.07.013
  • 39. Germain RW, Einarson MD, Fure A, Chapman S, Parker B (2014) Dye based laser750 induced fluorescence sensing of chlorinated solvent DNAPLs. Conference proceedings, paper 1–14
  • 40. Goebel M, Knight R, Halkjær M (2019) Mapping saltwater intrusion with an airborne electromagnetic method in the offshore coastal environment, Monterey Bay, California. J Hydrol Regional Stud 23:100602. https://doi.org/10.1016/j.ejrh.2019.100602
  • 41. Halihan T, Paxton S, Graham I, Fenstemakerb T, Rileya M (2005) Post- remediation evaluation of a LNAPL site using electrical resistivity imaging. J Environ Monit 7:283–287
  • 42. Hamilton SM (2000) Spontaneous potential and electrochemical cells. In: Handbook of exploration Geochemistry, (Elsevier, New York) p 81–119
  • 43. He X, Koch J, Torben OS, Jorgensen F, Cyril S, Refsgaard JC (2014) Transition probability-based stochastic geological modeling using airborne geophysical data and borehole data. Water Resour Res 50:3147–3169. https://doi.org/10.1002/2013WR014593
  • 44. Hoornweg D, Bhada-Tata P (2012) What a waste: a global review of solid waste management. Urban development series; knowledge papers no. 15. World Bank, Washington, DC. World Bank. https://openknowledge.worldbank.org/handle/10986/17388
  • 45. Hubbard SS, Chen J, Peterson J, Majer EL, Williams KH, Swift DJ, Mailloux B, Rubin Y (2001) Hydrogeological characterization of the South Oyster bacterial transport site using geophysical data. Water Resour Res 37(10):2431–2456
  • 46. Hung YC, Lin CP, Lee CT, Weng KW (2019) 3D and boundary effects on 2d electrical resistivity tomography. Appl Sci 9:2963. https://doi.org/10.3390/app915296
  • 47. Jardani A, Revil A (2013) The self-potential method. Cambridge University Press, Cambridge
  • 48. Jiang S, Liu J, Xia X, Wang Z, Cheng L, Li X (2021) Simultaneous identification of contaminant sources and hydraulic conductivity field by combining geostatistics method with self-organizing maps algorithm. J Contam Hydrol 241:103815
  • 49. Jin S, Fallgren P, Cooper J, Morris J, Urynowicz M (2008) Assessment of diesel contamination in groundwater using electromagnetic induction geophysical techniques. J Environ Sci Health Part A 43:584–588
  • 50. Kavazanjian E, Poran C, Satoh T, Matasovic N, Snow M (1994) Non-Intrusive Rayleigh Wave Investigations at Solid Waste Landfills
  • 51. Kavazanjian E, Matasovic N, Bonaparte R, Schmertmann GR, (1995) Evaluation of MSW properties for seismic analysis Proceedings of the Specialty Conference on Geotechnical Practice in Waste Disposal New Orleans, LA, USA part 1 1126 1141
  • 52. Kaya MA, Özürlan G, Şengül E (2007) Delineation of soil and groundwater contamination using geophysical methods at a waste disposal site in Çanakkale, Turkey. Environ Monit Assess 135:441–446. https://doi.org/10.1007/s10661-007-9662-x
  • 53. Kearey P, Brooks M, Hill I (2002) An introduction to geophysical exploration, 3rd ed. ix + 262 pp. Oxford: Blackwell science. Price £29.95 (paperback). ISBN 0 632 04929 4. 140(3)
  • 54. Kemna A, Binley A, Slater L (2004) Crosshole IP imaging for engineering and environmental applications. Geophysics 69:97–107
  • 55. Kemna A, Binley A, Cassiani G, Niederleithinger E, Revil A, Slater L, Kruschwitz S (2012) An overview of the spectral induced polarization method for near-surface applications. Near Surf Geophys 10(6):453–468
  • 56. Konstantaki LA, Ghose R, Draganov D, Diaferia G, Heimovaara T (2015) Characterization of a heterogeneous landfill using seismic and electrical resistivity data. Geophysics 80:EN13–EN25. https://doi.org/10.1190/geo2014-0263
  • 57. Kuras O, Pritchard J, Meldrum PI, Chambers JE, Wilkinson PB, Ogilvy RD, Wealthall GP (2009) Monitoring hydraulic processes with Automated Time-Lapse Electrical Resistivity Tomography (ALERT). Comptes Rendus Geosci 341:868–885
  • 58. Kuras O, Wilkinso PB, Meldrum PI, Oxby LS, Uhlemann S, Chambers JE, Binley A, Graham J, Smith NT, Atherton N (2016) Geoelectrical monitoring of simulated subsurface leakage to support high-hazard nuclear decommissioning at the Sellafield Site, UK. Sci Total Environ 566–567:350–359. https://doi.org/10.1016/j.scitotenv.2016.04.212
  • 59. Lau AMP, Ferreira FJF, Stevanato R, Rosa Filho EF (2019) Geophysical and physicochemical investigations of an area contaminated by tannery waste: a case study from southern Brazil. Environ Earth Sci 78:517–533. https://doi.org/10.1007/s12665-019-8536-1
  • 60. Laura E, Gorelick SM, Zebker HA (2014) Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta. Vietnam Environ Res Lett 9(8):084010. https://doi.org/10.1088/1748-9326/9/8/084010.ISSN1748-9326
  • 61. Liu W, Lin P, Lü Q, Chen R, Cai H, Li J (2017) Time domain and frequency domain induced polarization modeling for three-dimensional anisotropic medium. J Environ Eng Geophys 22:435–439
  • 62. Loke MH, Barker RD (1996) Practical techniques for 3D resistivity surveys and data inversion. Geophys Prospect 44(1996):449–523
  • 63. Loke M, Chambers J, Rucker D, Kuras O, Wilkinson P (2013) Recent developments in the direct-current geoelectrical imaging method. J Appl Geophys 95:135–156. https://doi.org/10.1016/j.jappgeo.2013.02.017
  • 64. Loke M, Wilkinson P, Chambers J, Meldrum P (2017) Rapid inversion of data from 2D resistivity surveys with electrode displacements. Geophys Prospect. https://doi.org/10.1111/1365-2478.12522
  • 65. Loke MH (2000) Electrical imaging surveys for environmental and engineering studies. a practical guide to 2-D and 3-D surveys
  • 66. Loke MH (2002) Electrical imaging surveys for environmental and engineering studies: a practical guide to 2D and 3D surveys: tutorial
  • 67. Loke MH (2004) Tutorial: 2-D and 3D electrical imaging surveys. https ://sites.ualberta.ca/~unsworth/UA-classes/223/loke_course_notes .pdf
  • 68. Maurya P, Rønde V, Fiandaca G, Balbarini N, Auken E, Bjerg P, Christiansen A (2017) Detailed landfill leachate plume mapping using 2D and 3D electrical resistivity tomography - with correlation to ionic strength measured in screens. J Appl Geophys 138:1–8
  • 69. Maurya PK, Balbarini N, Møller I, Rønde V, Christiansen AV, Bjerg PL, Auken E (2018) Fiandaca, G (2018) Subsurface imaging of water electrical conductivity, hydraulic permeability, and lithology at contaminated sites by induced polarization. Geophys J Int 213(2):770–785. https://doi.org/10.1093/gji/ggy018
  • 70. Meju MA (2000) Geoelectrical investigation of old/abandoned, covered landfill sites in urban areas: model development with a genetic diagnosis approach. J Appl Geophys 44:115–150
  • 71. Mekonnen B, Haddis A, Zeine W (2020) Assessment of the effect of solid waste dump site on surrounding soil and river water quality in tepi town, Southwest Ethiopia. J Environ Public Health. https://doi.org/10.1155/2020/5157046
  • 72. Mepaiyeda S, Madi K, Gwavava O, Baiyegunhi C, Sigabi L (2019) contaminant delineation of a landfill site using electrical resistivity and induced polarization methods in alice, Eastern Cape, South Africa. Int J Geophys. https://doi.org/10.1155/2019/5057832
  • 73. Metwaly M, Elawadi EA, Moustafa SS, Al-Arifi N, El Alfy M, Al-Zaharani E (2014) Groundwater contamination assessment in the Al-Quwy’yia area of Central Saudi Arabia using transient electromagnetic and 2D electrical resistivity tomography. Environ Earth Sci 71(2):827–835
  • 74. Miller CR, Routh PS, Brosten TR, McNamara JP (2008) Application of time-lapse ERT imaging to watershed characterization. Geophysics 73:G7–G17. https://doi.org/10.1190/1.290715
  • 75. Moghaddam A, Dejpasand S, Rohani A, Parnow S, Ebrahimi M (2015) Detection and determination of groundwater contamination plume using time-lapse electrical resistivity tomography (ERT) method. J Mining Environ 8:103–110. https://doi.org/10.22044/jme.2015.523
  • 76. Montes RV, Martínez-Graña AM, Martínez Catalán JR, Arribas PA, Sánchez San Román FJ, Zazo C (2017) Integration of GIS, electromagnetic and electrical methods in the delimitation of groundwater polluted by effluent discharge (Salamanca, Spain): a case study. Int J Environ Res Public Health 14:1369. https://doi.org/10.3390/ijerph14111369
  • 77. Muntean OL (2005) Evaluarea impactului antropic asupra mediului, Casa Cărţii de Stiinţă
  • 78. Naudet V, Gourry JC, Girard F, Mathieu F (2014) Saada A (2014) 3D electrical resistivity tomography to locate DNAPL contamination around a housing estate. Near Surf Geophys 12(3):351–436
  • 79. Naudet V, Revil A, Bottero JY (2000) Geoelectrical methods applied on contaminated site: The Entressen and fill case study (South-Eastern France). In: 27th General Assembly of the European Geophysical Society (ASE), Avri, Nice
  • 80. Nimmer RE, Osiensky JI (2002) Direct current and self-potential monitoring of an evolving plume in partially saturated fractured rock. J Hydrol 267:258–272
  • 81. Okan EO (2015) Delineating groundwater contaminant plums using self-potential surveying method in Perth area, Australia. Int J Sci Technol Res 4(11):55–59
  • 82. Olaojo AA, Oladunjoye MA, Sanuade OA (2018) Geoelectrical assessment of polluted zone by sewage effluent in University of Ibadan campus southwestern Nigeria. Environ Monit Assess 190:24. https://doi.org/10.1007/s10661-017-6389-1
  • 83. Olaseeni OG, Sanuade OA, Adebayo SS, Oladapo MI (2018) Integrated geoelectric and hydrochemical assessment of Ilokun dumpsite, Ado Ekiti, southwestern Nigeria. Kuwait J Sci 45(4):82–92
  • 84. Orlando L, Marchesi E (2001) Georadar as a tool to identify and characterize solid waste dump deposits. J Appl Geophys 48(2001):163–174
  • 85. Orozco FA, Kemna A, Oberdörster C, Zschornack L, Leven C, Dietrich P (2012) Weiss H (2012) Delineation of subsurface hydrocarbon contamination at a former hydrogenation plant using spectral induced polarization imaging. J Contam Hydrol 136–137:131–144. https://doi.org/10.1016/j.jconhyd.2012.06.001
  • 86. Orozco AF, Ciampi P, Katona T, Censini M, Petrangeli PM, Deidd GP, Cassiani G (2021) Delineation of hydrocarbon contaminants with multi-frequency complex conductivity imaging. Sci Total Environ 768:144997. https://doi.org/10.1016/j.scitotenv.2021.144997
  • 87. Osinowo OO, Agbaje MA, Ariyo SO (2020) Integrated geophysical investigation techniques for mapping cassava effluent leachate contamination plume, at a dumpsite in Ilero, southwestern Nigeria. Sci Afr 8:e00374. https://doi.org/10.1016/j.sciaf.2020.e00374
  • 88. Park S, Yi M, Kim J, Shin SW (2016) Electrical resistivity imaging (ERI) monitoring for groundwater contamination in an uncontrolled South Korea landfill. J Appl Geophys 135(2016):1–7
  • 89. Patton S (2001) Optimierung von Salztracertests in Kombinationmit geoelektrischen Gleichstrom-Messungen zur Erkundung hydrogeologischer Fließparameter. Diplomarbeit, Geowissens chaftliche Fakulta ̈t der Universita ̈t Tu ̈bingen.
  • 90. Perrier FE, Petiau G, Clerc G, Bogorodsky V, Erkul E, Jouniaux L, Lesmes D, Macnae J, Meunier JM, Morgan D, Nascimento D, Oettinger G, Schwarz G, Toh H, Valiant MJ, Vozoff K, Yazici-Cakin O (1997) A one-year systematic study of electrodes for long period measurements of the electric field in geophysical environments. J Geomagn Geoelectr 49:1677–1696
  • 91. Petiau G (2000) Second generation of Lead-lead chloride electrodes for geophysical applications. Pure Appl Geophys 157(3):357–382
  • 92. Pomposiello C, Favetto A., Ostera H (2004) Resistivity imaging and Ground Penetrating Radar survey at Gualeguaychú landfill, Entre Ríos Province, Argentina: evidence of a contamination plume. IAGA WG 1.2 on Electromagnetic induction in the earth proceedings of the 17th Workshop Hyderabad, India, October 18–23, 2004
  • 93. Porsani JL, Filho WM, Vagner R, Elis FS, Dourado JC, Moura HP (2004) The use of GPR and VES in delineating a contamination plume in a landfill site: a case study in SE Brazil. J Appl Geophys 55(3–4):199–209. https://doi.org/10.1016/j.jappgeo.2003.11.001
  • 94. Radulescu M, Valerian C, Yang JW (2007) Time-lapse electrical resistivity anomalies due to contaminant transport around landfills. Ann Geophys 50(3):453–468
  • 95. Rao GT, Rao VVSG, Padalu G, Dhakate R, Sarma VS (2014) Application of electrical resistivity tomography methods for delineation of groundwater contamination and potential zones. Arab J Geosci 7:1373–1384. https://doi.org/10.1007/s12517-013-0835-3
  • 96. Revil A, Karaoulis M, Johnson T (2012) Kemna A (2012) Review: Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology. Hydrogeol J 20:617–658. https://doi.org/10.1007/s10040-011-0819-x
  • 97. Revil A, Florsch N, Mao D (2015a) Induced polarization response of porous media with metallic particles—Part 1: a theory for disseminated semiconductors. Geophysics 80(5):D525–D538
  • 98. Revil A, Abdel Aal GZ, Atekwana EA, Mao D, Florsch N (2015b) Induced polarization response of porous media with metallic particles—Part 2: Comparison with a broad database of experimental data. Geophysics 80(5):D539–D552
  • 99. Robinson DA, Binley A, Crook N, Day-Lewis FD, Ferré TPA, Grauch VJS, Knight R, Knoll M, Lakshmi V, Miller R, Nyquist J, Pellerin L, Singha K, Slater L (2008) Advancing process-based watershed hydrological research using near-surface geophysics: A vision for, and review of, electrical and magnetic geophysical methods. Hydrol Process 22(18):3604–3635. https://doi.org/10.1002/hyp.6963
  • 100. Rosales RM, Martínez-Pagán P, Faz A, Bech J (2014) Study of subsoil in former petrol stations in SE of Spain: physicochemical characterization and hydrocarbon contamination assessment. J Geochem Explor 147:306–320. https://doi.org/10.1016/j.gexplo.2014.10.006
  • 101. Sahadewa A, Zekkos D, Fei X, Li J, Zhao X (2014) Recurring shear wave velocity measurements at tshe smiths creek bioreactor landfill. Geotechnical special publication. 2072–2081. Doi: https://doi.org/10.1061/9780784413272.202
  • 102. Samouëlian A, Cousin I, Tabbagh A, Bruand A, Richard G (2005) Electrical resistivity survey in soil science: a review. Soil Tillage Res 83(2):173–193. https://doi.org/10.1016/j.still.2004.10.004
  • 103. Santos MFA, Almeida EP, Castro R, Nolasco R, Mendes-Victor L (2002) A hydrogeological investigation using EM34 and SP surveys. Earth Planets Space 54:655–662
  • 104. Sanuade OA, Amosun JO, Oyeyemi K, Olaojo A, Fagbemigun T, Faloyo J (2019) Analysis of principles of equivalence and suppression in resistivity sounding technique. J Phys Conf Ser 1299:012065. https://doi.org/10.1088/1742-6596/1299/1/012065
  • 105. Sauck WA, Atekwana EA, Nash MS (1998) High conductivities associated with an LNAPL plume imaged by integrated geophysical techniques. J Environ Eng Geophys 2:203–212
  • 106. Schlumberger C, Schlumberger M (1922) Phénomènes électriques produits par les gisements métalliques. C.R. Acad Des Sci 174:477–480
  • 107. Schlumberger C, Schlumberger M, Leonardon EG (1933) A New Contribution to Subsurface Studies by Means of Electrical Measurements in Drill Holes, T P. 503. Trans AIME 103:1–18
  • 108. Schwartz N, Furman A (2012) Spectral induced polarization signature of soil contaminated by organic pollutant: experiment and modeling. J Geophys Res Solid Earth, 117(B10)
  • 109. Seigel HO, Vanhala H, Sheard SN (1997) Some case histories of source discrimination using time-domain spectral IP. Geophysics 62(5):1394–1408
  • 110. Sharma PV (1997) Environmental and engineering geophysics. Cambridge University Press, UK, p 475
  • 111. Shokri BJ, Ardejani FB, Moradzadeh A (2016) Mapping the flow pathways and contaminants transportation around a coal washing plant using the VLF-EM, Geo-electrical and IP techniques—A case NE Iran study. Environ Earth Sci 75:62. https://doi.org/10.1007/s12665-015-4776-x
  • 112. Singha K, Gorelick SM (2005) Saline tracer visualized with three-dimensional electrical resistivity tomography: Field-scale spatial moment analysis. Water Resour Res 41:W05023. https://doi.org/10.1029/2004WR003460
  • 113. Slater L (2007) Surface electrical characterization of hydraulic conductivity: from petrophysical properties to aquifer geometries—a review. Surv Geophys 28:169–197. https://doi.org/10.1007/s10712-007-9022-y
  • 114. Slater LD, Sandberg SK (2000) Resistivity and induced polarization monitoring of salt transport under natural hydraulic gradients. Geophysics 65(2):408–420
  • 115. Smith KC, Dmello R (2016) Na-ion desalination (NID) enabled by Na-blocking membranes and symmetric Na-intercalation: porous-electrode modeling. J Electrochem Soc 163(3):A530
  • 116. Sogade JA, Scira-Scappuzzo F, Vichabian Y, Shi WQ, Rodi W, Lesmes DP, Morgan FD (2006) Induced-polarization detection and mapping of contaminant plumes. Geophysics 71:B75–B84
  • 117. Soupios PM, Georgakopoulos P, Papadopoulos N, Saltas V, Andreadakis A, Vallianatos F, Sarris A (2007) Makris JP (2007) Use of engineering geophysics to investigate a site for a building foundation. J Geophys Eng 4(1):94–103. https://doi.org/10.1088/1742-2132/4/1/011
  • 118. Soupios P, Karaoulis M (2015) Application of self-potential (sp) method for monitoring contaminants movement. Doi: https://doi.org/10.3997/2214-4609.201414147
  • 119. Sparrenbom CJ, Åkesson S, Johansson S, Hagerberg D, Dahlin T (2017) Investigation of chlorinated solvent pollution with resistivity and induced polarization. Sci Total Environ 575:767–778. https://doi.org/10.1016/j.scitotenv.2016.09.117
  • 120. Srigutomo W, Agustine E (2016) Investigation of underground hydrocarbon leakage using ground penetrating radar. J Phys Conf Ser 739:01237. https://doi.org/10.1088/1742-6596/739/1/01237
  • 121. Sudha A, Tezkan B, Israil M, Singhal DC, RaI J (2010) Geoelectrical mapping of aquifer contamination: a case study from Roorkee, India. Near Surf Geophys 8:33–42
  • 122. Sultan A, Sultan S, Ahmed M, Santos FM (2009) Helaly AS (2009) Geophysical exploration for gold and associated minerals, case study: Wadi El Beida area Southeastern Desert, Egypt,. J Geophys Eng 6(4):345–356. https://doi.org/10.1088/1742-2132/6/4/002
  • 123. Sundararajan N, Sankaran S, Tk AH (2012) Vertical electrical sounding (VES) and multi-electrode resistivity in environmental impact assessment studies over some selected lakes: a case study. Environ Earth Sci Environ Earth Sci. https://doi.org/10.1007/s12665-011-1132-7
  • 124. Telford WM, Geldart LP, Sheriff RE (1990) Resistivity methods. In: Applied geophysics, 2nd Edition, (Cambridge Univ. Press, Cambridge, UK) p 353–358. Doi: https://doi.org/10.1017/cbo9781139167932.012
  • 125. Thabit JM, Khalid FH (2016) Resistivity imaging survey to delineate subsurface seepage of hydrocarbon contaminated water at Karbala Governorate Iraq. Environ Earth Sci 75:87. https://doi.org/10.1007/s12665-015-4880-y
  • 126. Uhlemann S, Wilkinson P, Maurer H, Wagner F, Johnson T, Chambers J (2018) Optimized survey design for electrical resistivity tomography: combined optimization of measurement configuration and electrode placement. Geophys J Int 214:108–121. https://doi.org/10.1093/gji/ggy128
  • 127. Ullah Z, Khan H, Waseem A, Mahmood Q, Farooq U (2013) Water quality assessment of the River Kabul at Peshawar, Pakistan: industrial and urban wastewater impacts. J Water Chem Technol 35:170–176
  • 128. Ustra AT, Elis VR, Mondelli G, Zuquette LV, Giacheti HL (2012) Case study: a 3D resistivity and induced polarization imaging from downstream a waste disposal site in Brazil. Environ Earth Sci 66(3):763–772
  • 129. Vanhala H, Soininen H, Kukkonen I (1992) Detecting organic chemical contaminants by spectral-induced polarization method in glacial till environment. Geophysics 57(8):1014–1017
  • 130. Vaudelet P, Schmutz M, Pessel M, Franceschi M, Guérin R, Atteia O, Blondel A, Ngomseu C, Galaup S, Rejiba F, Bégassat P (2011) Mapping of contaminant plumes with geoelectrical methods. A case study in urban context. J Appl Geophys 75:738–751. https://doi.org/10.1016/j.jappgeo.2011.09.02
  • 131. Versteeg R, Ankeny M, Harbour J, Heath G, Kostelnik K, Mattson E, Moor K, Richardson A, Wangerud K (2004) A structured approach to the use of near-surface geophysics in long-term monitoring. Lead Edge 23:700–703. https://doi.org/10.1190/1.1776745
  • 132. Vichabian Y, Reppert P, Morgan FD (1999) Self-potential mapping of contaminants. Proc. Symp. Application of Geophysics to Engineering problems. 14–18, SAGEEP
  • 133. Wang TP, Chen CC, Tong LT, Chang PY, Chen YC, Dong TH, Liu HC, Lin CP, Yang KH, Ho CH, Cheng SN (2015) Applying FDEM, ERT and GPR at a site with soil contamination: a case study. J Appl Geophys 121:21–30. https://doi.org/10.1016/j.jappgeo.2015.07.005
  • 134. Wilkinson PB, Uhlemann S, Meldrum PI, Chambers JE, Carrière S, Lucy S (2015) Oxby, Loke MH (2015) Adaptive time-lapse optimized survey design for electrical resistivity tomography monitoring. Geophys J Int 203(1):755–766. https://doi.org/10.1093/gji/ggv329
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc84a7f5-d685-4c34-bbf2-d84e821c6104
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.