Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Nonlinear properties of metal matrix composites (MMCs) are studied. The research combines results of loading–unloading tensile tests, microstructural observations and numerical predictions by means of micromechanical mean-field models. AA2124/SiC metal matrix composites with SiC particles, produced by the Aerospace Metal Composites Ltd. (AMC) are investigated. The aluminum matrix is reinforced with 17% and 25% of SiC particles. The best conditions to evaluate the current elastic stiffness modulus have been assessed. Tensile tests were carried out with consecutive unloading loops to obtain actual tensile modulus and study degradation of elastic properties of the composites. The microstructure examination by scanning electron microscopy (SEM) showed a variety of phenomena occurring during composite deformation and possible sources of elastic stiffness reduction and damage evolution have been indicated. Two micromechanical approaches, the incremental Mori–Tanaka (MT) and self-consistent (SC) schemes, are applied to estimate effective properties of the composites. The standard formulations are extended to take into account elasto-plasticity and damage development in the metal phase. The method of direct linearization performed for the tangent or secant stiffness moduli is formulated. Predictions of both approaches are compared with experimental results of tensile tests in the elastic–plastic regime. The question is addressed how to perform the micromechanical modelling if the actual stress–strain curve of metal matrix is unknown.
Czasopismo
Rocznik
Tom
Strony
560--577
Opis fizyczny
Bibliogr. 47 poz., fot., rys., wykr.
Twórcy
autor
- Faculty of Civil Engineering, Warsaw University of Technology, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
autor
- Institute of Fundamental Technological Research (IPPT PAN), Pawińskiego 5B, 02-106 Warsaw, Poland
autor
- Łukasiewicz Research Network - Institute of Precision Mechanics, Duchnicka 3, 01-796 Warsaw, Poland
autor
- Institute of Fundamental Technological Research (IPPT PAN), Pawińskiego 5B, 02-106 Warsaw, Poland
autor
- Motor Transport Institute, Jagiellońska 80, 03-301 Warsaw, Poland
autor
- Institute of Fundamental Technological Research (IPPT PAN), Pawińskiego 5B, 02-106 Warsaw, Poland
Bibliografia
- [1] Chawla N, Shen Y-L. Mechanical behavior of particle reinforced metal matrix composites. Adv Eng Mater. 2001;3(6):357–70. https://doi.org/10.1002/1527-2648(20010 6)3:6<357:AID-ADEM357>3.0.CO;2-I.
- [2] Das DK, Mishra PCh, Singh S, Thakur RK. Properties of ceramic-reinforced aluminium matrix composites-a review. Int J Mech Mater Eng. 2014;1:12. https ://doi.org/10.1186/s40712-014-0012-9.
- [3] Kouzeli M, Weber L, San Marchi C, Mortensen A. Quanti-fication of microdamage phenomena during tensile straining of high volume fraction particle reinforced aluminium. Acta Mater. 2001;49(3):497–505. https ://doi.org/10.1016/S1359-6454(00)00334 -7.
- [4] Kouzeli M, Weber L, San Marchi C, Mortensen A. Influence of damage on the tensile behaviour of pure aluminium reinforced with ≥ 40 vol. pct alumina particles. Acta Mater. 2001;49(18):3699–709. https ://doi.org/10.1016/S1359-6454(01)00279 -8.
- [5] Maire E, Verdu C, Lormand G, Fougeres R. Study of the damage mechanisms in an OSPREY™ A1 alloy-SiCp composite by scanning electron microscope in situ tensile tests. Mater Sci Eng A. 1995;196:135–44.
- [6] Doel TJA, Bowen P. Tensile properties of particulate-reinforced metal matrix composites. Compos A. 1996;27(8):655–65. https://doi.org/10.1016/1359-835X(96)00040 -1.
- [7] Srivatsan T, Mattingly J. Influence of heat treatment on the tensile properties and fracture behaviour of an aluminium alloy-ceramic particle composite. J Mater Sci. 1993;28(3):611–20. https ://doi.org/10.1007/BF011 51235.
- [8] Rutecka A, Kowalewski ZL, Makowska K, Pietrzak K, Dietrich L. Fatigue damage of Al/SiC composites-macroscopic and microscopic analysis. Arch Metall Mater. 2015;60(1):101–5. https ://doi.org/10.1515/amm-2015-0016.
- [9] Rutecka A, Kowalewski ZL, Pietrzak K, Dietrich L, Makowska K, Woźniak J, Kostecki M, Bochniak W, Olszyna A. Damage development of Al/SiC metal matrix composite under fatigue, creep and monotonic loading conditions. Procedia Eng. 2011;10:1420–5. https ://doi.org/10.1016/j.proen g.2011.04.236.
- [10] Gatea S, Ou H, McCartney G. Deformation and fracture characteristics of Al6092/SiC/17.5p metal matrix composite sheets due to heat treatments. Mater. Charact. 2018;142:365–76. https://doi.org/10.1016/j.match ar.2018.05.050.
- [11] Shang JK, Ritchie RO. Crack bridging by uncracked ligaments during crack growth in SiC-reinforced aluminum-alloy composites. Metall Trans. 1989;20(5):899–908. https://doi.org/10.1007/BF026 51656 .
- [12] Qin C, Wang L, Jiang W, Bai S, Chen L. Microstructure characterization and mechanical properties of TiSi2–SiC–Ti3SiC2composites prepared by spark plasma sintering. Mater Trans. 2006;47(3):845–8. https ://doi.org/10.2320/mater trans .47.845.
- [13] Zhang G-J, Yue X-M, Watanabe T, Yagishita O. In situ synthesis of Mo(Si, Al)2-SiC composites. J Mater Sci. 2000;35:4729–33. https ://doi.org/10.1023/A:10048 11308 556.
- [14] Chen Z, He P, Chen L. The role of particles in fatigue crack propagation of aluminum matrix composites and casting aluminum alloys. J Mater Sci Technol. 2007;23(2):213–6.
- [15] Rocha-Rangel E, Refugio-García E, Miranda-Hernández JG, Terrés-Rojas E. Fracture toughness enhancement for metal-reinforced alumina. J Ceram Proc Res. 2009;10(6):744–7.
- [16] Lemaitre J. A course on damage mechanics. 2nd ed. Berlin, Heidelberg: Springer-Verlag; 1996. https ://doi.org/10.1007/978-3-642-18255 -6.
- [17] Celentano DJ, Chaboche J-L. Experimental and numerical characterization of damage evolution in steels. Int J Plasticity. 2007;23(10–11):1739–62. https ://doi.org/10.1016/j.ijplas.2007.03.008.
- [18] Bonora N. Identification and measurement of ductile damage parameters. J Strain Anal Eng Des. 1999;34(6):463–78. https://doi.org/10.1243/03093 24991 51389 4.
- [19] Lemaitre J, Dufailly J. Damage measurements. Eng Fract Mech. 1987;28(5–6):643–61. https ://doi.org/10.1016/0013-7944(87)90059 -2 special Issue in Honor of Professor Takeo Yokobori.
- [20] Bonora N, Ruggiero A, Gentile D, De Meo S. Practical applicability and limitations of the elastic modulus degradation technique for damage measurements in ductile metals. Strain. 2011;47(3):241–54. https ://doi.org/10.1111/j.1475-1305.2009.00678 .x.
- [21] Suquet P. Effective properties of nonlinear composites. In: Suquet P, editor. Continuum micromechanics. CISM lecture notes, vol. 377. New York: Springer; 1997. p. 197–264. https ://doi.org/10.1007/978-3-7091-2662-2_4.
- [22] Geers MGD, Kouznetsova VG, Matouš K, Yvonnet J. Homogenization methods and multiscale modeling: nonlinear problems. In: Stein E, Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics. 2nd ed. 2017. https ://doi.org/10.1002/9781119176 817.ecm21 07.
- [23] Kouznetsova VG, Brekelmans WAM, Baaijens FPT. An approach to micro-macro modeling of heterogeneous materials. Comput Mech. 2001;27:37–48. https ://doi.org/10.1007/s0046 60000 212.
- [24] Gornet L, Marguet S, Marckmann G. Modeling of Nomex® hon-eycomb cores, linear and nonlinear behaviors. Mech Adv Mater Struct. 2007;14(8):589–601. https ://doi.org/10.1080/15376 49070 16753 70.
- [25] Llorca J. Deformation and damage in particle-reinforced composites: experiments and model. In: Böhm HJ, editor. Mechanics of microstructured materials. International Centre for Mechanical Sciences (Courses and Lectures), vol. 464. Vienna: Springer; 2004. p. 87–124. https ://doi.org/10.1007/978-3-7091-2776-6_4.
- [26] Basista M, Węglewski W. Modelling of damage and fracture in ceramic matrix composites an overview. J Theor Appl Mech. 2006;44(3):455–84.
- [27] Eckschlager A, Han W, Böhm HJ. A unit cell model for brittle fracture of particles embedded in a ductile matrix. Comput Mater Sci. 2002;25(1–2):85–91. https ://doi.org/10.1016/S0927-0256(02)00252 -5.
- [28] Segurado J, LLorca J. A new three-dimensional interface finite element to simulate fracture in composites. Int J Solids Struct. 2004;41(11–12):2977–93. https ://doi.org/10.1016/j.ijsolstr.2004.01.007.
- [29] Benabou L, Benseddiq N, Naı̈t-Abdelaziz M. Comparative analysis of damage at interfaces of composites. Compos B. 2002;33(3):215–24. https ://doi.org/10.1016/S1359-8368(02)00004 -5.
- [30] Bonfoh N, Lipinski P. Ductile damage micromodeling by particles’ debonding in metal matrix composites. Int J Mech Sci. 2007;49(2):151–60. https ://doi.org/10.1016/j.ijmecsci.2006.08.015.
- [31] LLorca J, Segurado J. Three-dimensional multiparticle cell sim-ulations of deformation and damage in sphere-reinforced composites. Mater Sci Eng A. 2004;365(1–2):267–74. https ://doi.org/10.1016/j.msea.2003.09.035.
- [32] Kursa M, Kowalczyk-Gajewska K, Lewandowski MJ, Petryk H. Elastic-plastic properties of metal matrix composites: validation of mean-field approaches. Eur J Mech A Solids. 2018;68:53–66. https ://doi.org/10.1016/j.eurom echso l.2017.11.001.
- [33] Chaboche JL, Kruch S, Maire JF, Pottier T. Towards a micro-mechanics based inelastic and damage modeling of composites. Int J Plast. 2001;17:411–39. https ://doi.org/10.1016/S0749-6419(00)00056 -5.
- [34] Smaga M, Walther F, Eifler D. Monotonic and cyclic deformation behaviour of the SiC particle-reinforced aluminium matrix composite AMC225xe. Adv Eng Mater. 2010;12(4):262–8. https://doi.org/10.1002/adem.20090 0345.
- [35] A. Rutecka, Nowoczesne kompozyty w osnowie metalowej (MMC) AA2124/SiC w warunkach rozciągania, zmęczenia i pełzania- pierwszy krok do wykrywania oraz szacowania uszkodzeń, W.J. Gilewski (ed.), Wybrane zagadnienia współczesnej inżynierii lądowej, Monografia Wydziału Inżynierii Lądowej, (2018) 155–170, Warszawa.
- [36] Winter L, Hockauf K, Lampke T. Temperature and particle size influence on the high cycle fatigue behavior of the SiC rein-forced 2124 aluminum alloy. Metals. 2018;8(1):43. https ://doi.org/10.3390/met80 10043 .
- [37] Chaboche J-L, Kanouté P, Roos A. On the capabilities of mean-field approaches for the description of plasticity in metal matrix composites. Int J Plasticity. 2005;21(7):1409–34. https ://doi.org/10.1016/j.ijpla s.2004.07.001.
- [38] Sadowski P, Kowalczyk-Gajewska K, Stupkiewicz S. Consistent treatment and automation of the incremental Mori-Tanaka scheme for elastoplastic composites. Comput Mech. 2017;60(3):493–511. https ://doi.org/10.1007/s0046 6-017-1418-z.
- [39] Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 1973;21(5):571–4. https ://doi.org/10.1016/0001-6160(73)90064-3.
- [40] Hill R. Continuum micro-mechanics of elastoplastic poly-crystals. J Mech Phys Solids. 1965;13(2):89–101. https ://doi.org/10.1016/0022-5096(65)90023 -2.
- [41] Tandon GP, Weng GJ. A theory of particle-reinforced plasticity. ASME J Appl Mech. 1988;55(1):126–35. https ://doi.org/10.1115/1.31736 18.
- [42] Doghri I, Ouaar A. Homogenization of two-phase elasto-plastic composite materials and structures. Study of tangent opera-tors, cyclic plasticity and numerical algorithms. Int J Solids Struct. 2003;40:1681–712. https ://doi.org/10.1016/S0020-7683(03)00013 -1.
- [43] Christensen R, Lo K. Solutions for effective shear properties in three phase sphere and cylinder models. J Mech Phys Solids. 1979;27(4):315–30. https ://doi.org/10.1016/0022-5096(79)90032-2.
- [44] Christensen R. Mechanics of composite materials. New York: Dover Publications; 2005.
- [45] E. Martín, A. Forn, M.T. Baile, J.A. Picas. Influence of heat treat-ments on mechanical properties of 2124 aluminium matrix composites. In: International Conference on innovative solutions for the advancement of the transport industry, San Sebastián, Spain, 4th–6th October 2006.
- [46] Ferro-Ceramic Grinding Inc. Ceramic Properties Tables. https ://www.ferro ceram ic.com/Silic on Carbide_table.htm (Last accessed: 2nd June 2020).
- [47] eFunda, Inc. Mechanical properties of wrought AA2124. https ://www.efund a.com (Last accessed: 2nd June 2020).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc752599-8f4a-492a-bf1a-a38dfd04cc84