PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Strength optimization of geopolymer pastes synthesized from high calcium bottom ash and red clay: A study of composition and activation parameters

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aims to synthesize and enhance the strength of geopolymer pastes using high-calcium bottom ash (BA) and red clay (RC), both abundant and sustainable resources. The physical and chemical properties of the synthesized geopolymer pastes were evaluated by investigating key synthesis parameters, including the BA/RC weight ratio, the SiO2/Al2O3 mole ratio, the Na2O/Al2O3 mole ratio, and the concentration of sodium hydroxide. Various ratios of BA and RC were combined with alkaline activators of sodium hydroxide and sodium silicate to prepare the geopolymer pastes. The optimal conditions for achieving the highest compressive strength were identified as a BA/RC weight ratio of 90/10, a SiO2/ Al2O3 mole ratio of 6, a Na2O/Al2O3 mole ratio of 2, and activation with 10 M sodium hydroxide. Compressive strength increased with a higher SiO2/Al2O3 mole ratio, while an elevated Na2O/Al2O3 mole ratio initially reduced strength. Additionally, the dissolution of silica and alumina from the BA and RC precursors significantly improved with increased sodium hydroxide concentration. This research supports environmental sustainability by reducing industrial waste, minimizing reliance on Portland cement, and promoting circular economy principles through the development of high-strength, eco-friendly construction materials.
Twórcy
  • Department of Chemistry, School of Science, University of Phayao, Phayao, Thailand
  • Department of Chemistry, School of Science, University of Phayao, Phayao, Thailand
  • Unit of Excellence on Advanced Nanomaterials, University of Phayao, Phayao, Thailand
  • Department of Industrial Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
  • Department of Chemistry, School of Science, University of Phayao, Phayao, Thailand
  • Unit of Excellence on Advanced Nanomaterials, University of Phayao, Phayao, Thailand
Bibliografia
  • 1. Eliche-Quesada D., Calero-Rodríguez A., Bonet-Martínez E., Pérez-Villarejo L., Sánchez-Soto PJ. Geopolymers made from metakaolin sources, partially replaced by Spanish clays and biomass bottom ash. J Build Eng. 2021, 40, 102761. https://doi.org/10.1016/j.jobe.2021.102761.
  • 2. Choeycharoen P., Sornlar W., Wannagon A. A sustainable bottom ash-based alkali-activated materials and geopolymers synthesized by using activator solutions from industrial wastes. J Build Eng. 2022, 54, 104659. https://doi.org/10.1016/j.jobe.2022.104659.
  • 3. Davidovits J. Geopolymers-inorganic polymeric new materials. J Therm Anal. 1991, 37, 1633–1656. https://doi.org/10.1007/BF01912193.
  • 4. Prasanphan S., Wannagon A., Kobayashi T., Jiemsirilers S. Reaction mechanisms of calcined kaolin processing waste-based geopolymers in the presence of low alkali activator solution. Constr Build Mater. 2019, 221, 409–420. https://doi.org/10.1016/j.conbuildmat.2019.06.116.
  • 5. Keppert M., Vejmelková E., Bezdička P., Doleželová M., Čáchová M., Scheinherrová L., et al. Red-clay ceramic powders as geopolymer precursors: Consideration of amorphous portion and CaO content. Appl Clay Sci. 2018, 161, 82–89. https://doi.org/10.1016/j.clay.2018.04.019.
  • 6. Wongsa A., Zaetang Y., Sata V., Chindaprasirt P. Properties of lightweight fly ash geopolymer concrete containing bottom ash as aggregates. Constr Build Mater. 2016, 111, 637–643. https://doi.org/10.1016/j.conbuildmat.2016.02.135.
  • 7. Ju S., Bae S., Jung J., Park S., Pyo S. Use of coal bottom ash for the production of sodium silicate solution in metakaolin-based geopolymers concerning environmental load reduction. Constr Build Mater. 2023, 391, 131846. https://doi.org/10.1016/j.conbuildmat.2023.131846.
  • 8. Ogwang G., Olupot P.W., Kasedde H., Menya E., Storz H., Kiros Y. Experimental evaluation of rice husk ash for applications in geopolymer mortars. J Bioresour Bioprod. 2022, 54, 104659. https://doi.org/10.1016/j.jobab.2021.02.008.
  • 9. Juengsuwattananon K., Winnefeld F., Chindaprasirt P., Pimraksa K. Correlation between initial SiO2/Al2O3, Na2O/Al2O3, Na2O/SiO2 and H2O/Na2O ratios on phase and microstructure of reaction products of metakaolin-rice husk ash geopolymer. Constr Build Mater. 2019, 226, 406–417. https://doi.org/10.1016/j.conbuildmat.2019.07.146.
  • 10. Mohammed A.S.S.K., Géber R., Simon A., Kurovics E., Hamza A. Comparative study of metakaolin-based geopolymer characteristics utilizing different dosages of water glass in the activator solution. Results Eng. 2023, 20, 101469. https://doi.org/10.1016/j.rineng.2023.101469.
  • 11. Xu H., Van Deventer J.S.J. The geopolymerisation of alumino-silicate minerals, Int J Miner Process. 2000, 59, 247–266. https://doi.org/10.1016/S0301-7516(99)00074-5.
  • 12. Singh N.B. Fly Ash-Based Geopolymer Binder: A Future Construction Material. Mineral. 2018, 8(7), 299. https://doi.org/10.3390/min8070299.
  • 13. Amran M., Debbarma S., Ozbakkaloglu T. Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties. Constr. Build. Mater. 2021, 270, 121857. https://doi.org/10.1016/j.conbuildmat.2020.121857.
  • 14. Gaurav G., Kandpal S.C., Mishra D., Kotoky N. A comprehensive review on fly ash-based geopolymer: a pathway for sustainable future. J. Sustain. Cem.-Based Mater. 2024, 12(1), 100–144. https://doi.org/10.1080/21650373.2023.2258122.
  • 15. Wongsa A., Boonserm K., Waisurasingha C., Sata V., Chindaprasirt P. Use of municipal solid waste incinerator (MSWI) bottom ash in high calcium fly ash geopolymer matrix. J Clean Prod. 2017, 148, 49–59. https://doi.org/10.1016/j.jclepro.2017.01.147.
  • 16. Mohammed B.S., Haruna S., Wahab M.M.A., Liew M.S., Haruna A. Mechanical and microstructural properties of high calcium fly ash one-part geopolymer cement made with granular activator. Heliyon 2019, 5(9), e02255. https://doi.org/10.1016/j.heliyon.2019.e02255.
  • 17. Suksiripattanapong C., Krosoongnern K., Thumrongvut J., Sukontasukkul P., Horpibulsuk S., Chindaprasirt P. Properties of cellular lightweight high calcium bottom ash-portland cement geopolymer mortar. Case Stud. Constr. Mater. 2020, 12, e00337. https://doi.org/10.1016/j.cscm.2020.e00337.
  • 18. Pathak A., Ranjit A., Dhakal B. Geopolymerization behaviour of red and white clays. J Nepal Chem Soc. 2022, 43(1), 28–35.
  • 19. ASTM. C109/C109M-20b: Standard test method for compressive strength of hydraulic cement mortars (using 2-in.or [50 mm] cube specimens. ASTM International: West Conshohocken, PA, USA; 2020.
  • 20. Pimraksa K., Setthaya N., Thala M., Chindaprasirt P., Murayama M. Geopolymer/Zeolite composite materials with adsorptive and photocatalytic properties for dye removal. PLoS One. 2020, 15(10), e0241603. https://doi.org/10.1371/journal.pone.0241603.
  • 21. Snellings R., Mertens G., Elsen J. Supplementary cementitious materials. Rev Mineral Geochem. 2012, 74(1), 211–278. https://doi.org/10.2138/rmg.2012.74.6.
  • 22. Chindawong C., Damrongwiriyanupap N., Dimitrios P., Pimraksa K., Setthaya N. Water absorption and compressive strength of various coal fly ash-based geopolymer pastes. Adv Cem Res. 2021, 34(3), 120–129. https://doi.org/10.1680/jadcr.20.00086.
  • 23. Kaze R.C., Moungam L.M.B., Cannio M., Rosa R., Kamseu E., Melo U.C., et al. Microstructure and engineering properties of Fe2O3(FeO)-Al2O3-SiO2 based geopolymer composites. J Clean Prod. 2018, 119, 849–859. https://doi.org/10.1016/j.jclepro.2018.07.171.
  • 24. Goodman B.A., Russell J.D., Fraser A.R. A Mössbauer and IR spectroscopic study of the structure of nontronite. Clays Clay Miner. 1976, 24, 53–59. https://doi.org/10.1346/CCMN.1976.0240201.
  • 25. Kaya M., Koksal F., Gencel O., Munir M.J., Kazmi S.M.S. Influence of micro Fe2O3 and MgO on the physical and mechanical properties of the zeolite and kaolin based geopolymer mortar. J Build Eng. 2022, 52, 104443. https://doi.org/10.1016/j.jobe.2022.104443.
  • 26. Zailani W.W.A., Abdullah M.M.A., Arshad M.F., Burduhos-Nergis D.D., Tahir M.F.M. Effect of iron oxide (Fe2O3) on the properties of fly ash based geopolymer. IOP Conf Ser: Mater Sci Eng. 2020, 877, 012017. https://doi.org/10.1088/1757-899X/877/1/012017.
  • 27. Zhao X., Liu C., Zuo L., Wang L., Zhu Q., Wang M. Investigation into the effect of calcium on the existence form of geopolymerized gel product of fly ash based geopolymers. Cem Concr Compos. 2019, 103, 279–292. https://doi.org/10.1016/j.cemconcomp.2018.11.019.
  • 28. Duxson P., Lukey G.C., Separovic F., van Deventer J.S.J. Effect of alkali cations on aluminum incorporation in geopolymeric gels. Ind Eng Chem Res. 2005, 44(4), 832–839. https://doi.org/10.1021/ie0494216.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc724bd8-0c38-4491-a3d1-ada0cb4937dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.