PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An evaluation of the phytotoxicity of filter backwash water coagulation products from a pool water system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The possibility of using the process of coagulation for purifying the filter backwash water from a swimming pool water system has been presented. The assessment of the process efficiency based on the physicochemical parameters was extended by a phytotoxicity analysis of products (sludges and supernatant liquids) obtained from the coagulation processes. The phytotoxicity of sludges was examined with respect to garden cress (Lepidium sativum) and white mustard (Sinapis alba), while duckweed (Lemna minor) was used for studying liquids. Coagulation process was highly effective in purifying backwash water when the lowest of the studied aluminum coagulant doses (from 7 to 20 mg/dm3) was used. Moreover, the phytotoxicity assessment of backwash water allowed the determination of the hazard toward plants, which would be posed by using the backwash water for plant irrigation. The high stimulation of the growth of plant indices, observed in samples with raw backwash water, was caused by nutritive nitrogen and phosphorus. Their removal, in the case of postcoagulation solutions, significantly contributed to the inhibition of plant growth. In turn, sludges derived from both raw washings and coagulation exhibited phytotoxicity.
Rocznik
Strony
43--56
Opis fizyczny
Bibliogr. 26 poz., tab., rys.
Twórcy
  • Institute of Water and Wastewater Engineering, Silesian University of Technology, ul. Konarskiego 18, 44-100 Gliwice, Poland
autor
  • Institute of Water and Wastewater Engineering, Silesian University of Technology, ul. Konarskiego 18, 44-100 Gliwice, Poland
  • Institute of Water and Wastewater Engineering, Silesian University of Technology, ul. Konarskiego 18, 44-100 Gliwice, Poland
Bibliografia
  • [1] BRANDT M.J., JOHNSON K.M., ELPHINSTON A.J., RATANYAKA D.D., Water filtration (Chapter 9), [In:] Twort’s Water Supply, Butterworth-Heinemann, 2017, 367.
  • [2] Norm DIN 19643-1:2012-11, Treatment of water of swimming pools and baths. Part 1. General requirements, 2012 (in German).
  • [3] KANAN A., KARANFIL T., Formation of disinfection by-products in indoor swimming pool water. The contribution from filling water natural organic matter and swimmer body fluids, Water Res., 2011, 45, 926.
  • [4] SPILIOTOPOULOU A., HANSEN K.M.S., ANDERSEN H.R., Secondary formation of disinfection by products by UV treatment of swimming pool water, Sci. Total Environ., 2015, 520, 96.
  • [5] WYCZARSKA-KOKOT J., The study of possibilities for reuse of washings from swimming pool circulation systems, Ecol. Chem. Eng. S, 2016, 23 (3), 447.
  • [6] SCHOLZ M., Chapter 7. Coagulation and Flocculation In: Wetlands for Water Pollution Control, Elsevier Science, 2015, 37.
  • [7] GOTTFRIED A., SHEPARD A.D., HARDIMAN K., WALSH M.E., Impact of recycling filter backwash water on organic removal in coagulation–sedimentation processes, Water Res., 2008, 42, 4683.
  • [8] ZHOU Z., YANG Y., LI X., GAO W., LIANG H., LI G., Coagulation efficiency and flocs characteristics of recycling sludge during treatment of low temperature and micro-polluted water, J. Environ. Sci., 2012, 24 (6), 1014.
  • [9] NOWACKA A., WŁODARCZYK-MAKUŁA M., MACHERZYŃSKI B., Comparison of effectiveness of coagulation with aluminum sulfate and pre-hydrolyzed aluminium coagulants, Desalin. Water Treat., 2014, 52, 3843.
  • [10] LI X., ZHANG Y., ZHAO X., GAO N., FU T., The characteristics of sludge from enhanced coagulation processes using PAC/PDMDAAC composite coagulants in treatment of micro-polluted raw water, Sep. Purif. Technol., 2015, 147, 125.
  • [11] NAUMANN B., EBERIUS M., APPENROTH K.J., Growth rate based dose–response relationships and EC values of ten heavy metals using the duckweed growth inhibition test (ISO 20079) with Lemna minor L. clone St., J. Plant Physiol., 2007, 164, 1656.
  • [12] PANTAZOPOULOU E., ZEBILIADOU O., MITRAKAS M., ZOUBOULIS A., Stabilization of tannery sludge by co-treatment with aluminium anodizing sludge and phytotoxicity of end-products, Waste Manage., 2017, 61, 327.
  • [13] RICHTER E., ROLLER E., KUNKEL U., TERNES T.A., COORS A., Phytotoxicity of wastewater-born micropollutants. Characterisation of three antimycotics and a cationic surfactant, Environ. Poll., 2016, 208, 512.
  • [14] GATIDOU G., OURSOUZIDOU M., STEFANATOU A., STASINAKIS A.S., Removal mechanisms of benzotriazoles in duckweed Lemna minor wastewater treatment systems, Sci. Total Environ., 2017, 596–597, 12.
  • [15] RADIĆ S., STIPANIČEV D., CVJETKO P., LOVRENČIĆ-MIKELIĆ I., MIRIJANOVIĆ-RAJČIĆ M., ŠIRAC S., PEVALEK-KOZLINA B., PAVLICA M., Ecotoxicological assessment of industrial effluent using duckweed (Lemna minor L.) as a test organism, Ecotoxicology, 2010, 19, 216.
  • [16] RADIĆ S., STIPANIČEV D., CVJETKO P., MIRIJANOVIĆ-RAJČIĆ M., ŠIRAC S., PEVALEK-KOZLINA B., PAVLICA M., Duckweed Lemna minor as a tool for testing toxicity and genotoxicity of surfacewaters, Ecotoxicol. Environ. Saf., 2011, 74, 182.
  • [17] OLESZCZUK P., RYCAJ M., LEHMANN J., CORNELISSEN G. Influence of activated carbon and biochar on phytotoxicity of air-dried sewage sludges to Lepidium sativum, Ecotoxicol. Environ. Saf., 2012, 80, 321.
  • [18] JAŚKO I., OLESZCZUK P., PRANAGAL J., LEHMANN J., XING B., CORNELISEN G., Effect of biochars, activated carbon and multiwalled carbon nanotubes on phytotoxicity of sediment contaminated by inorganic and organic pollutants, Ecol. Eng., 2013, 60, 50.
  • [19] ŁASKAWIEC E., DUDZIAK M., WYCZARSKA-KOKOT J., Evaluation of coagulation process effectiveness in purification of filter washings from swimming pool circulation system, Ochr. Środ., 2018, 40 (1),57 (in Polish).
  • [20] POTTER B.B., WIMSATT J.C., Method 415.3. Measurement of total organic carbon, dissolved organic carbon and specific UV absorbance at 254 nm in source water and drinking water, U.S. Standard Optional Procedure, 2005.
  • [21] SIMS I., WHITEHOUSE P., LACEY R., The OECD Lemna growth inhibition test. R&D Technical Report EMA 003, Environment Agency, Washington, DC, 1999.
  • [22] MicroBiotest Inc., Phytotoxkit seed germination and early growth microbiotest higher plants, Environmental Protection Agency, Washington, DC, 2004.
  • [23] MAILLER R., GASPERI J., COQUET Y., DEROMEC C., BULETÉ A., VULLIET E., BRESSY A., VARRAULT G., CHEBBO G., ROCHER V., Removal of emerging micropollutants from wastewater by activated carbon adsorption: Experimental study of different activated carbons and factors influencing the adsorption of micropollutants in wastewater, J. Environ. Chem. Eng., 2016, 4, 1102.
  • [24] MEINEL F., ZEITZSCHMANN F., RUHL A.S., SPERLICH A., JAKEL M., The benefits of powdered activated carbon recirculation for micropollutant removal in advanced wastewater treatment, Water Res., 2016, 91, 97.
  • [25] RADIĆ S., BABIĆ M., ŠKOBIĆ D., ROJE V., PEVALEK-KOZLINA B., Ecotoxicological effects of aluminum and zinc on growth and antioxidants in Lemna minor L., Ecotoxicol. Environ. Saf., 2010, 73 (3), 336.
  • [26] GINOS A., MANIOS T., MANTZAVINOS D., Treatment of olive mill effluents by coagulation–flocculation–hydrogen peroxide oxidation and effect on phytotoxicity, J. Hazard Mater., 2006, B133, 135.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc6f054a-fc57-492e-8d46-2f37cbc3d76d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.