Identyfikatory
Warianty tytułu
Application of cellular automata method to develop a digital representation of selected features of the microstructure based on the binary images of its components
Języki publikacji
Abstrakty
W ramach pracy stworzono program komputerowy, w którym zaimplementowano dwuwymiarowy automat komórkowy wraz z autorskim algorytmem do przetwarzania obrazów binarnych rzeczywistej mikrostruktury na jej cyfrową reprezentację. Szczegółowo opisano schemat dyskretyzacji badanego obszaru mikrostruktury. Zaprezentowano możliwości opracowanego rozwiązania.
A computer program was built in this work, where a two-dimensional cellular automaton is implemented and including authors’ algorithm for conversion of binary images of the real microstructure to the digital microstructure representation. Discretization scheme of the investigated microstructure is explained in detail. The possibilities of the developed solution were presented.
Czasopismo
Rocznik
Tom
Strony
2--7
Opis fizyczny
Bibliogr. 16 poz., wykr., zdj.
Twórcy
Bibliografia
- 1. Tong, M., Li, D. i Li, Y.: Modeling the austenite-ferrite diffusive transformation during continuous cooling on a mesoscale using Monte Carlo method. Acta Materialia. 2004, Tom 52, strony 1155–1162.
- 2. Tong, M., Li, D. i Li, Y.: A q-state Potts model-based Monte Carlo method used to model the isothermal austenite-ferrite transformation under non-equilibrium interface condition. Acta Materialia. 2005, Tom 53, strony 1485–1497.
- 3. Lewis, A. C., Jordan, K. A. i Geltmacher, A. B.: Determination of Critical Microstructural Features in an Austenitic Stainless Steel Using Image-Based Finite Element Modeling. Metallurgical And Materials Transactions A. 2008, Tom 39A, strony 1109-1117.
- 4. Madej, L., i inni.: Numerical analysis of strain inhomogeneities during deformation on the basis of the three dimensional digital material representation. Computer Methods In Materials Science. 2011, Tom 11, strony 375-380.
- 5. Steinbach, I., i inni.: A phase field concept for multiphase systems,. Physica D. 1996, Tom 94, strony 135–147.
- 6. Militzer, M, i inni.: Three-dimensional phase field modelling of the austenite-to-ferrite transformation. Acta Materialia. 2006, Tom 54, strony 3961–3972.
- 7. Zhang, L., i inni.: A cellular automaton investigation of the transformation from austenite to ferrite during continuous cooling. Acta Materialia. 2003, Tom 51, strony 5519-5527.
- 8. Lan, Y. J., Li, D. Z. i Li, Y. Y.: Modeling austenite decomposition into ferrite at different cooling rate in low-carbon steel with cellular automaton method. Acta Materialia. 2004, Tom 52, strony 1721-1729.
- 9. Zheng, C., Raabe, D. i Li, D.: Prediction of post-dynamic austenite-to-ferrite transformation and reverse transformation in a low-carbon steel by cellular automaton modeling. Acta Materialia. 2012, Tom 60, strony 4768–4779.
- 10. Lewis, A. C., i inni.: Two- and three-dimensional microstructural characterization of a super-austenitic stainless steel. Materials Science and Engineering A. 2006, Tom 418, strony 11-18.
- 11. Bernacki, M., i inni.: Development of numerical tools for the multiscale modelling of recrystallisation in metals, based on a digital material framework. Computer Methods in Materials Science. 2007, Tom 7, 1, strony 142-149.
- 12. Madej, L.: Digital material representation of polycrystals in application to numerical simulations of inhomogenous deformation. Computer Methods in Materials Science. 2010, Tom 10, 3, strony 1-13.
- 13. Milenin, A. i Kustra, P.: The multiscale FEM simulation of wire fracture phenomena during drawing of Mg alloy. Steel Research International. 2008, Tom 79, strony 717-722.
- 14. Rauch, L i Madej, L.: Application of the Automatic Image Processing in Modeling of the Deformation Mechanisms Based on the Digital Representation of Microstructure. International Journal for Multiscale Computational Engineering. 2010, Tom 8, 3, strony 343-356.
- 15. Raabe, D. i Becker, R. C.: Coupling of a crystal plasticity finite-element model with a probabilistic cellular automaton for simulating primary static recrystallization in aluminium. Modelling and Simulation in Materials Science and Engineering. 2000, Tom 8, strony 445-462.
- 16. Szala, J.: Met-Ilo v12.1 - instrukcja obsługi programu. Katowice, 2009, unpublished (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc6996da-99b0-41a9-8be3-bb2de6fda121