PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microbial Biofilm of Plastic in Tropical Marine Environment and their Potential for Bioremediation of Plastic Waste

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Plastic debris has become a global problem due to its widespread distribution and accumulation in the marine environment. Indigenous bacteria in the marine environment are able to quickly contaminate plastic surface and assemble to form successional plastisphere-specific bacterial. The formation of microbial biofilms on the plastic surface can indirectly initiate the degradation of plastic polymers. The environmental conditions of the tropical region make the growth of microbial biofilms become faster. However, the study on the biodiversity of microorganisms in marine plastic debris is limited to the northern hemisphere, which includes subtropical and temperate regions. This review provides current studies of biodiversity and community structure of plastisphere in tropical environments, including bacteria and microalgae, and their potential to degrade the plastic polymer. A systematic literature search has been conducted using Scopus with different combinations of keywords. In addition, Google Scholar databases were also used to find more studies on some specific topics, including plastic degrading organisms. The climate-associated areas have been grouped according to the latitude of the study site into tropical, subtropical, and temperate latitudes. The microorganisms analyzed in this review are only bacteria, actinobacteria, and microalgae.
Rocznik
Strony
261--275
Opis fizyczny
Bibliogr. 92 poz., tab.
Twórcy
  • Research Center for Oceanography, National Research and Innovation Agency, East Ancol, North Jakarta, 14430, Jakarta, Indonesia
  • Research Center for Oceanography, National Research and Innovation Agency, East Ancol, North Jakarta, 14430, Jakarta, Indonesia
  • Research Center for Oceanography, National Research and Innovation Agency, East Ancol, North Jakarta, 14430, Jakarta, Indonesia
  • Research Center for Oceanography, National Research and Innovation Agency, East Ancol, North Jakarta, 14430, Jakarta, Indonesia
  • Research Center for Oceanography, National Research and Innovation Agency, East Ancol, North Jakarta, 14430, Jakarta, Indonesia
  • Research Center for Oceanography, National Research and Innovation Agency, East Ancol, North Jakarta, 14430, Jakarta, Indonesia
  • Research Center for Oceanography, National Research and Innovation Agency, East Ancol, North Jakarta, 14430, Jakarta, Indonesia
Bibliografia
  • 1. Abed R.M.M., Muthukrishnan T., Al Khaburi M., Al-Senafi F., Munam A., Mahmoud H. 2020. Degradability and biofouling of oxo-biodegradable polyethylene in the planktonic and benthic zones of the Arabian Gulf. Marine Pollution Bulletin, 150, 110639. https://doi.org/10.1016/J.MARPOLBUL.2019.110639
  • 2. Albertsson A.C., Andersson S.O., Karlsson S. 1987. The mechanism of biodegradation of polyethylene. Polymer Degradation and Stability, 18, 73–87. https://doi.org/10.1016/0141-3910(87)90084-X
  • 3. Alvarez A., Saez J.M., Davila Costa J.S., Colin V.L., Fuentes M.S., Cuozzo S.A., Benimeli C. S., Polti M.A., Amoroso M.J. 2017. Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere, 166, 41–62. https://doi.org/10.1016/j.chemosphere.2016.09.070
  • 4. Amaral-Zettler L.A., Ballerini T., Zettler E.R., Asbun A.A., Adame A., Casotti R., Dumontet B., Donnarumma V., Engelmann J.C., Frère L., Mansui J., Philippon M., Pietrelli L., Sighicelli M. 2021. Diversity and predicted interand intra-domain interactions in the Mediterranean Plastisphere. Environmental Pollution, 286, 117439. https://doi.org/https://doi.org/10.1016/j.envpol.2021.117439
  • 5. Amaral-Zettler L.A., Zettler E.R., Mincer T.J. 2020. Ecology of the plastisphere. In Nature Reviews Microbiology, Nature Research, 18(3), 139–151. https://doi.org/10.1038/s41579-019-0308-0
  • 6. Amaral-Zettler L.A., Zettler E.R., Slikas B., Boyd G.D., Melvin D.W., Morrall C.E., Proskurowski G., Mincer T.J. 2015. The biogeography of the Plastisphere: Implications for policy. Frontiers in Ecology and the Environment, 13(10), 541–546. https://doi.org/10.1890/150017
  • 7. Amend A.S., Oliver T.A., Amaral-Zettler L.A., Boetius A., Fuhrman J.A., Horner-Devine M. C., Huse S.M., Welch D.B.M., Martiny A.C., Ramette A., Zinger L., Sogin M.L., Martiny J.B.H. 2013. Macroecological patterns of marine bacteria on a global scale. Journal of Biogeography, 40, 800–811. https://doi.org/10.1111/jbi.12034
  • 8. Ammala A., Bateman S., Dean K., Petinakis E., Sangwan P., Wong S., Yuan Q., Yu L., Patrick C., Leong K.H. 2011. An overview of degradable and biodegradable polyolefins. Progress in Polymer Science (Oxford), 36, 1015–1049. https://doi.org/10.1016/j.progpolymsci.2010.12.002
  • 9. Andrady A.L. 2011. Microplastics in the marine environment. Marine Pollution Bulletin, 62(8), 1596–1605. https://doi.org/10.1016/J.MARPOLBUL.2011.05.030
  • 10. Auta H.S., Emenike C.U., Jayanthi B., Fauziah S.H. 2018. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Marine Pollution Bulletin, 127, 15–21. https://doi.org/10.1016/j.marpolbul.2017.11.036
  • 11. Balasubramanian V., Natarajan K., Hemambika B., Ramesh N., Sumathi C.S., Kottaimuthu R., Rajesh Kannan V. 2010. High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Letters in Applied Microbiology, 51(2), 205–211. https://doi.org/10.1111/j.1472-765X.2010.02883.x
  • 12. Baptista Neto J.A., Gaylarde C., Beech I., Bastos A.C., da Silva Quaresma V., de Carvalho D.G. 2019. Microplastics and attached microorganisms in sediments of the Vitória bay estuarine system in SE Brazil. Ocean & Coastal Management, 169, 247–253. https://doi.org/10.1016/J.OCECOAMAN.2018.12.030
  • 13. Barnes D.K.A., Galgani F., Thompson R.C., Barlaz M. 2009. Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1985–1998. https://doi.org/10.1098/rstb.2008.0205
  • 14. Bonhomme S., Cuer A., Delort A.M., Lemaire J., Sancelme M., Scott G. 2003. Environmental biodegradation of polyethylene. Polymer Degradation and Stability, 81(3), 441–452. https://doi.org/10.1016/S0141-3910(03)00129-0
  • 15. Borozan D. 2013. Exploring the relationship between energy consumption and GDP: Evidence from Croatia. Energy Policy, 59, 373–381. https://doi.org/10.1016/j.enpol.2013.03.061
  • 16. Bryant J.A., Clemente T.M., Viviani D.A., Fong A.A., Thomas K.A., Kemp P., Karl D.M., White A.E., DeLong E.F., Jansson J.K. 2016. Diversity and Activity of Communities Inhabiting Plastic Debris in the North Pacific Gyre. MSystems, 1(3), e0002416. https://doi.org/doi:10.1128/mSystems.00024-16
  • 17. Carson H.S., Nerheim M.S., Carroll K.A., Eriksen M. 2013. The plastic-associated microorganisms of the North Pacific Gyre. Marine Pollution Bulletin, 75(1), 126–132. https://doi.org/https://doi.org/10.1016/j.marpolbul.2013.07.054
  • 18. Casabianca S., Capellacci S., Giacobbe M.G., Dell’Aversano C., Tartaglione L., Varriale F., Narizzano R., Risso F., Moretto P., Dagnino A., Bertolotto R., Barbone E., Ungaro N., Penna A. 2019. Plastic-associated harmful microalgal assemblages in marine environment. Environmental Pollution, 244, 617–626. https://doi.org/10.1016/j.envpol.2018.09.110
  • 19. Casabianca S., Capellacci S., Penna A., Cangiotti M., Fattori A., Corsi I., Ottaviani M.F., Carloni R. 2020. Physical interactions between marine phytoplankton and PET plastics in seawater. Chemosphere, 238, 124560. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.124560
  • 20. Cho J.Y., Lee Park S., Lee H.J., Kim S.H., Suh M.J., Ham S., Bhatia S.K., Gurav R., Park S. H., Park K., Yoo D., Yang Y.H. 2021. Polyhydroxyalkanoates (PHAs) degradation by the newly isolated marine Bacillus sp. JY14. Chemosphere, 283, 131172. https://doi.org/10.1016/J.CHEMOSPHERE.2021.131172
  • 21. Curren, E., Leong S.C.Y. 2019. Profiles of bacterial assemblages from microplastics of tropical coastal environments. Science of the Total Environment, 655, 313–320. https://doi.org/10.1016/j.scitotenv.2018.11.250
  • 22. Dang H., Li T., Chen M., Huang G. 2008. Crossocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Applied and Environmental Microbiology, 74(1), 52–60. https://doi.org/10.1128/AEM.01400-07
  • 23. Debroas D., Anne M., Alexandra T.H. 2017. Plastics in the North Atlantic garbage patch: A boat-microbe for hitchhikers and plastic degraders. Science of the Total Environment, 599–600, 1222–1232. https://doi.org/10.1016/j.scitotenv.2017.05.059
  • 24. Delacuvellerie A., Cyriaque V., Gobert S., Benali S., Wattiez R. 2019. The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation. Journal of Hazardous Materials, 380, 120899. https://doi.org/10.1016/j.jhazmat.2019.120899
  • 25. Diez M.C. 2010. Biological aspects involved in the degradation of organic pollutants. Journal of Soil Science and Plant Nutrition, 10(3), 244–267. https://doi.org/10.4067/S0718-95162010000100004
  • 26. Eich A., Mildenberger T., Laforsch C., Weber M. 2015. Biofilm and diatom succession on polyethylene (PE) and biodegradable plastic bags in two marine habitats: Early signs of degradation in the pelagic and benthic zone? PLoS ONE, 10. https://doi.org/10.1371/journal.pone.0137201
  • 27. Flemming H.C., Wingender J. 2010. The biofilm matrix. Nature Reviews Microbiology, 8(9), 623–633. https://doi.org/10.1038/nrmicro2415
  • 28. Fuhrman J.A., Steele J.A., Hewson I., Schwalbach M.S., Brown M.V, Green J.L., Brown J.H. 2008. A latitudinal diversity gradient in planktonic marine bacteria. PNAS, 105(22), 7774–7778. https://doi.org/10.1073/pnas.0803070105
  • 29. Galgani F., Hanke G., Maes T. 2015. Global Distribution, Composition and Abundance of Marine Litter. Marine Anthropogenic Litter, 29–56. https://doi.org/10.1007/978-3-319-16510-3
  • 30. Galgani L., Engel A., Rossi C., Donati A., Loiselle S.A. 2018. Polystyrene microplastics increase microbial release of marine Chromophoric Dissolved Organic Matter in microcosm experiments. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-018-32805-4
  • 31. Geyer R., Jambeck J.R., Law K.L. 2017. Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782–e1700782. https://doi.org/10.1126/sciadv.1700782
  • 32. Goldstein M.C., Carson H.S., Eriksen M. 2014. Relationship of diversity and habitat area in North Pacific plastic-associated rafting communities. Marine Biology, 161(6), 1441–1453. https://doi.org/10.1007/s00227-014-2432-8
  • 33. Goodfellow M. 1983. The actinomyces of the soil. Ann. Rev. Microbial, 37, 189–216. https://doi.org/10.1097/00010694-191602000-00001
  • 34. Harrison J.P., Boardman C., O’Callaghan K., Delort A.M., Song J. 2018. Biodegradability standards for carrier bags and plastic films in aquatic environments: a critical review. Royal Society Open Science, 5(5), 171792. https://doi.org/10.1098/RSOS.171792
  • 35. Harshvardhan K., Jha B. 2013. Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Marine Pollution Bulletin, 77(1–2), 100–106. https://doi.org/10.1016/j.marpolbul.2013.10.025
  • 36. Hwang J., Choi D., Han S., Jung S.Y., Choi J., Hong J. 2020. Potential toxicity of polystyrene microplastic particles. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-64464-9
  • 37. Iñiguez M.E., Conesa J.A., Fullana A. 2017. Pollutant content in marine debris and characterization by thermal decomposition. Marine Pollution Bulletin, 117(1–2), 359–365. https://doi.org/10.1016/j.marpolbul.2017.02.022
  • 38. Jambeck J.R., Geyer R., Wilcox C., Siegler T.R., Perryman M., Andrady A., Narayan R., Law K.L. 2015. Plastic waste inputs from land into the ocean. Science, 347(6223), 768–771. https://doi.org/10.1126/science.1260352
  • 39. Jarerat A., Tokiwa Y., Tanaka H. 2003. Poly(L-lactide) degradation by Kibdelosporangium aridum. Biotechnology Letters, 25(23), 2035–2038. https://doi.org/10.1023/B:BILE.0000004398.38799.29
  • 40. Jiang P., Zhao S., Zhu L., Li D. 2018. Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2017.12.105
  • 41. Jones P.R., Cottrell M.T., Kirchman D.L., Dexter S.C. 2007. Bacterial community structure of biofilms on artificial surfaces in an estuary. Microbial Ecology, 53, 153–162. https://doi.org/10.1007/s00248-006-9154-5
  • 42. Kathiresan K. 2003. Polythene and plastic-degrading microbes in an Indian mangrove soil. Revista de Biologia Tropical, 51(3–4), 629–633. http://www.ncbi.nlm.nih.gov/pubmed/15162769
  • 43. Ladau J., Sharpton T.J., Finucane M.M., Jospin G., Kembel S.W., O’Dwyer J., Koeppel A.F., Green J.L., Pollard K.S. 2013. Global marine bacterial diversity peaks at high latitudes in winter. ISME Journal. https://doi.org/10.1038/ismej.2013.37
  • 44. Lo Piccolo L., de Pasquale C., Fodale R., Puglia A.M., Quatrini P. 2011. Involvement of an alkane hydroxylase system of Gordonia sp. strain SoCg in degradation of solid n-alkanes. In Applied and Environmental Microbiology, 77(4), 1204–1213. https://doi.org/10.1128/AEM.02180-10
  • 45. Lobelle D., Cunliffe M. 2011. Early microbial biofilm formation on marine plastic debris. Marine Pollution Bulletin, 62(1), 197–200. https://doi.org/10.1016/J.MARPOLBUL.2010.10.013
  • 46. Maes T., Jessop R., Wellner N., Haupt K., Mayes A.G. 2017. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Scientific Reports, 7, 1–10. https://doi.org/10.1038/srep44501
  • 47. Masó M., Fortuño J.M., De Juan S., Demestre M. 2016. Microfouling communities from pelagic and benthic marine plastic debris sampled across Mediterranean coastal waters. Scientia Marina, 80, 117–127. https://doi.org/10.3989/scimar.04281.10a
  • 48. Masó M., Garcés E., Pagès F., Camp J. 2003. Drifting plastic debris as a potential vector for dispersing Harmful Algal Bloom (HAB) species. Scientia Marina, 67(1), 107–111. https://doi.org/10.3989/scimar.2003.67n1107
  • 49. McCormick A., Hoellein T.J., Mason S.A., Schluep J., Kelly J.J. 2014. Microplastic is an abundant and distinct microbial habitat in an urban river. Environmental Science and Technology. https://doi.org/10.1021/es503610r
  • 50. Montazer Z., Habibi Najafi M.B., Levin D.B. 2020. Challenges with Verifying Microbial Degradation of Polyethylene. Polymers, 12(1), 123. https://doi.org/10.3390/polym12010123
  • 51. Mor R., Sivan A. 2008. Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber: Biodegradation of polystyrene. Biodegradation, 19(6), 851–858. https://doi.org/10.1007/s10532-008-9188-0
  • 52. Muthukrishnan T., Al Khaburi M., Raeid, Abed M.M. 2019. Fouling Microbial Communities on Plastics Compared with Wood and Steel: Are They Substrate-or Location-Specific? Microbial Ecology, 78, 361–374. https://doi.org/10.1007/s00248-018-1303-0
  • 53. Nag M., Lahiri D., Dutta B., Jadav G., Ray R.R. 2021. Biodegradation of used polyethylene bags by a new marine strain of Alcaligenes faecalis LNDR-1. Environmental Science and Pollution Research, 28, 41365–41379. https://doi.org/10.1007/s11356-021-13704-0
  • 54. Nowak B., Pajak J., Drozd-Bratkowicz M., Rymarz G. 2011. Microorganisms participating in the biodegradation of modified polyethylene films in different soils under laboratory conditions. International Biodeterioration and Biodegradation, 65(6), 757–767. https://doi.org/10.1016/j.ibiod.2011.04.007
  • 55. Oberbeckmann S., Kreikemeyer B., Labrenz M. 2018. Environmental Factors Support the Formation of Specific Bacterial Assemblages on Microplastics. Frontiers in Microbiology, 8, 2709. https://doi.org/10.3389/fmicb.2017.02709
  • 56. Oberbeckmann S., Loeder M.G.J., Gerdts G., Osborn A.M. 2014. Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. FEMS Microbiology Ecology, 90(2), 478–492. https://doi.org/10.1111/1574-6941.12409
  • 57. Oberbeckmann S., Osborn A.M., Duhaime M.B. 2016. Microbes on a Bottle: Substrate, Season and Geography Influence Community Composition of Microbes Colonizing Marine Plastic Debris. PLOS ONE, 11(8), e0159289. https://doi.org/10.1371/journal.pone.0159289
  • 58. Oliveira J., Belchior A., Silva V.D., Rotter A., Petrovski Ž., Almeida P.L., Lourenço N.D., Gaudêncio S.P. 2020. Marine Environmental Plastic Pollution : Mitigation by Microorganism Degradation and Recycling Valorization. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.567126
  • 59. Pommier T., Canbäck B., Riemann L., Boström K.H., Simu K., Lundberg P., Tunlid A., Hagström Å. 2007. Global patterns of diversity and community structure in marine bacterioplankton. Molecular Ecology, 16, 867–880. https://doi.org/10.1111/j.1365-294X.2006.03189.x
  • 60. Raes E.J., Bodrossy L., Van De Kamp J., Bissett A., Ostrowski M., Brown M.V., Sow S.L.S., Sloyan B., Waite A.M. 2018. Oceanographic boundaries constrain microbial diversity gradients in the south pacific ocean. PNAS, 115(35), 8266–8275. https://doi.org/10.1073/pnas.1719335115
  • 61. Raghul S.S., Bhat S.G., Chandrasekaran M., Francis V., Thachil E.T. 2014. Biodegradation of polyvinyl alcohol-low linear density polyethylene-blended plastic film by consortium of marine benthic vibrios. International Journal of Environmental Science and Technology, 11, 1827–1834. https://doi.org/10.1007/s13762-013-0335-8
  • 62. Rajandas H., Parimannan S., Sathasivam K., Ravichandran M., Su Yin L. 2012. A novel FTIR-ATR spectroscopy based technique for the estimation of low-density polyethylene biodegradation. Polymer Testing, 31(8), 1094–1099. https://doi.org/10.1016/j.polymertesting.2012.07.015
  • 63. Rajeev M., Sushmitha T.J., Toleti S.R., Pandian S.K. 2019. Culture dependent and independent analysis and appraisal of early stage biofilm-forming bacterial community composition in the Southern coastal seawater of India. Science of The Total Environment, 666, 308–320. https://doi.org/10.1016/J.SCITOTENV.2019.02.171
  • 64. Rathore D.S., Sheikh M., Singh S.P. 2021. Marine Actinobacteria: New Horizons in Bioremediation. Environmental and Microbial Biotechnology, December, 425–449. https://doi.org/10.1007/978-981-15-4439-2_20
  • 65. Reisser J., Shaw J., Hallegraeff G., Proietti M., Barnes D.K.A., Thums M., Wilcox C., Hardesty B.D., Pattiaratchi C. 2014. Millimeter-Sized Marine Plastics: A New Pelagic Habitat for Microorganisms and Invertebrates. PLoS ONE, 9(6), e100289. https://doi.org/10.1371/journal.pone.0100289
  • 66. Ren L., Wang G., Huang Y., Guo J., Li C., Jia Y., Chen S., Zhou J.L., Hu H. 2021. Phthalic acid esters degradation by a novel marine bacterial strain Mycolicibacterium phocaicum RL-HY01: Characterization, metabolic pathway and bioaugmentation. Science of The Total Environment, 791, 148303. https://doi.org/10.1016/J.SCITOTENV.2021.148303
  • 67. Renner L.D., Weibel D.B. 2011. Physicochemical regulation of biofilm formation. MRS Bulletin, 36(5), 347–355. https://doi.org/10.1557/mrs.2011.65
  • 68. Roager L., Sonnenschein E.C. 2019. Bacterial Candidates for Colonization and Degradation of Marine Plastic Debris. Environmental Science and Technology, 53(20), 11636–11643. https://doi.org/10.1021/ACS.EST.9B02212
  • 69. Rummel C.D., Jahnke A., Gorokhova E., Kü D., Schmitt-Jansen M. 2017. Impacts of Biofilm Formation on the Fate and Potential Effects of Microplastic in the Aquatic Environment. https://doi.org/10.1021/acs.estlett.7b00164
  • 70. Ryabushko L., Miroshnichenko E., Blaginina A., Shiroyan A., Lishaev D. 2021. Diatom and cyanobacteria communities on artificial polymer substrates in the Crimean coastal waters of the Black Sea. Marine Pollution Bulletin, 169, 112521. https://doi.org/https://doi.org/10.1016/j.marpolbul.2021.112521
  • 71. Sangeetha D.R., Ramya R., Kannan K., Robert A.A., Rajesh K.V. 2019. Investigation of biodegradation potentials of high density polyethylene degrading marine bacteria isolated from the coastal regions of Tamil Nadu, India. Marine Pollution Bulletin, 138, 549–560. https://doi.org/10.1016/J.MARPOLBUL.2018.12.001
  • 72. Schlundt C., Mark Welch J.L., Knochel A.M., Zettler E.R., Amaral-Zettler L.A. 2020. Spatial structure in the “Plastisphere”: Molecular resources for imaging microscopic communities on plastic marine debris. Molecular Ecology Resources, 20(3), 620–634. https://doi.org/10.1111/1755-0998.13119
  • 73. Sharma M., Dangi P., Choudhary M. 2014. Actinomycetes : Source, Identification, and Their Applications Actinomycetes : Source, Identification, and Their Applications. International Journal of Current Microbiology and Applied Sciences, January 2014.
  • 74. Shivlata L., Satyanarayana T. 2015. Thermophilic and alkaliphilic Actinobacteria: Biology and potential applications. In Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.01014
  • 75. Silva M.M., Maldonado G.C., Castro R.O., de Sá Felizardo J., Cardoso R.P., Anjos R.M. dos, Araújo F.V. de. 2019. Dispersal of potentially pathogenic bacteria by plastic debris in Guanabara Bay, RJ, Brazil. Marine Pollution Bulletin, 141, 561–568. https://doi.org/10.1016/J.MARPOLBUL.2019.02.064
  • 76. Sivan A., Szanto M., Pavlov V. 2006. Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Applied Microbiology and Biotechnology, 72(2), 346–352. https://doi.org/10.1007/s00253-005-0259-4
  • 77. Smith I.L., Stanton T., Law A. 2021. Plastic habitats: Algal biofilms on photic and aphotic plastics. Journal of Hazardous Materials Letters, 2, 100038. https://doi.org/https://doi.org/10.1016/j.hazl.2021.100038
  • 78. Sung C.C., Tachibana Y., Suzuki M., Hsieh W.C., Kasuya K.I. 2016. Identification of a poly(3-hydroxybutyrate)-degrading bacterium isolated from coastal seawater in Japan as Shewanella sp. Polymer Degradation and Stability, 129, 268–274. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2016.05.008
  • 79. Suzuki M., Tachibana Y., Oba K., Takizawa R., Kasuya K. ichi. 2018. Microbial degradation of poly(ε-caprolactone) in a coastal environment. Polymer Degradation and Stability, 149, 1–8. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2018.01.017
  • 80. Syakti A.D., Bouhroum R., Hidayati N.V., Koenawan C.J., Boulkamh A., Sulistyo I., Lebarillier S., Akhlus S., Doumenq P., Wong-Wah-Chung P. 2017. Beach macro-litter monitoring and floating microplastic in a coastal area of Indonesia. Marine Pollution Bulletin, 122(1–2), 217–225. https://doi.org/10.1016/j.marpolbul.2017.06.046
  • 81. Syamimi R.I. 2018. Degradation of microplastics by formulated bacterial consortium isolated from mangrove areas in Peninsular Malaysia. In University of Malaya.
  • 82. Syranidou E., Karka K., Amorotti F., Franchini M., Repouskou E., Kaliva M., Vamv M., Kolvenbach B., Fava F., Corvini P.F., Kalogerakis N. 2017. Biodegradation of weathered polystyrene films in seawater microcosms. Scientific Report, 1–12. https://doi.org/10.1038/s41598-017-18366-y
  • 83. Tosin M., Weber M., Siotto M., Lott C., Innocenti F.D. 2012. Laboratory test methods to determine the degradation of plastics in marine environmental conditions. Frontiers in Microbiology, 3(JUN). https://doi.org/10.3389/fmicb.2012.00225
  • 84. Tseng M., Hoang K.C., Yang M.K., Yang S.F., Chu W.S. 2007. Polyester-degrading thermophilic actinomycetes isolated from different environment in Taiwan. Biodegradation, 18(5), 579–583. https://doi.org/10.1007/s10532-006-9089-z
  • 85. Valan A.M., Asha K.R.T., Duraipandiyan V., Ignacimuthu S., Agastian P. 2012. Characterization and phylogenetic analysis of novel polyene type antimicrobial metabolite producing actinomycetes from marine sediments: Bay of Bengal India. Asian Pacific Journal of Tropical Biomedicine, 2(10), 803–810. https://doi.org/10.1016/ S2221-1691(12)60233-0
  • 86. Van Cauwenberghe L., Devriese L., Galgani F., Robbens J., Janssen C.R. 2015. Microplastics in sediments: A review of techniques, occurrence and effects. Marine Environmental Research, 111, 5–17. https://doi.org/10.1016/j.marenvres.2015.06.007
  • 87. Walther B.A., Kunz A., Hu C.S. 2018. Type and quantity of coastal debris pollution in Taiwan: A 12-year nationwide assessment using citizen science data. Marine Pollution Bulletin, 135(August), 862–872. https://doi.org/10.1016/j.marpolbul.2018.08.025
  • 88. Woodall Id L.C., Jungblut A.D., Hopkins K., Id A.H., Robinson L.F., Gwinnett C., Paterson G.L.J. 2018. Deep-sea anthropogenic macrodebris harbours rich and diverse communities of bacteria and archaea. PLoS ONE, 13(11), e0206220. https://doi.org/10.1371/journal.pone.0206220
  • 89. Xie H., Chen J., Feng L., He L., Zhou C., Hong P., Sun S., Zhao H., Liang Y., Ren L., Zhang Y., Li C. 2021. Chemotaxis-selective colonization of mangrove rhizosphere microbes on nine different microplastics. Science of The Total Environment, 752, 142223. https://doi.org/10.1016/J.SCITOTENV.2020.142223
  • 90. Yang T., Ren L., Jia Y., Fan S., Wang J., Wang J., Nahurira R., Wang H., Yan Y. 2018. Biodegradation of Di-(2-ethylhexyl) Phthalate by Rhodococcus ruber YC-YT1 in Contaminated Water and Soil. International Journal of Environmental Research and Public Health, 15(5). https://doi.org/10.3390/IJERPH15050964
  • 91. Zafeiridou M., Hopkinson N.S., Vouvoulis N. 2018. Cigarette smoking: An assessment of tobacco’s global environmental footprint across its entire supply chain, and policy strategies to reduce it (1st ed.). World Health Organization (WHO).
  • 92. Zettler E.R., Mincer T.J., Amaral-Zettler L.A. 2013. Life in the “Plastisphere”: Microbial Communities on Plastic Marine Debris. Environmental Science & Technology, 47(13), 7137–7146. https://doi.org/10.1021/es401288x
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc637134-9961-4338-ae9d-c29aa02cb4d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.