Identyfikatory
Warianty tytułu
Konferencja
European Conference on Buried Flexible Steel Structures (3 ; 24-25.04.2017 ; Rydzyna, Polska)
Języki publikacji
Abstrakty
Soil-steel composite bridges are considered competitive structures being an economical alternative to similar span concrete bridges. They are increasingly used for road and railway bridge construction. Spans have increased and structures with spans over 20 m have been built. The continuous development of infrastructure impels designers to push the limits of these structures for bigger spans with the lowest possible height of cover. Since the birth of the ring compression theory, different design methods have been developed to account for the various conditions and facilitate the use of bigger span structures. Yet, there is an urge to investigate whether the current design procedures are conservative or if they are reasonably accurate to predict the capacity of large-span structures. This paper presents the on-going project involving the capacity of large-span soil-steel composite bridges. The study investigates the use of finite element modelling in predicting the performance of a case study for an ultimate limit state field test. The project also highlights the need and intention to perform an ultimate limit state test for a large-span structure. The outcome of the project is to assess the current design procedures and to reflect recommendations on the design where seen applicable.
Czasopismo
Rocznik
Tom
Strony
287--292
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
- Division of Structural Engineering and Bridges, KTH Royal Institute of Technology, Sweden
autor
- Division of Structural Engineering and Bridges, KTH Royal Institute of Technology, Sweden
Bibliografia
- [1] Duncan JM. Behavior and Design of Long-span Metal Culverts. J Geotech Eng Div 1979; 105:399-418.
- [2] McGrath TJ, Moore ID, Selig ET, Webb MC, Taleb B, Board TR, et al. Recommended Specifications for Large-Span Culverts (NCHRP report 473). Transportation Research Board; 2002.
- [3] AASHTO. LRFD Bridge Design Specifications. Washington, DC: American Association of State Highway and Transportation Officials; 2012.
- [4] Duncan JM. Soil-Culvert Interaction Method for Design of Metal Culverts. Transp Res Rec 1978:53-9.
- [5] Pettersson L, Flener EB, Sundquist H. Design of Soil-Steel Composite Bridges. Struct Eng Int 2015;25:159-72. doi: 10.2749/101686614X14043795570499.
- [6] Pettersson L, Sundquist H. Design of Soil Steel Composite Bridges. 5th ed. Stockholm: KTH Royal Institute of Technology; 2014.
- [7] CSA Canadian Standards Association. Canadian Highway Bridge Design Code S6-14. 11th ed. Canada: CSA Canadian Standards Association; 2014.
- [8] Klöppel K, Glock D. Theoretische und Experimentelle Untersuchungen zu den Traglastproblemen Biegeweicher, in die Erde Eingebetteter Rohre. Darmstadt: Institutes für Statik und Stahlbau der Technischen Hochschule Darmstadt; 1970.
- [9] Temporal J, Barratt A D, Hunnibell BEF. Loading Tests on an ARMCO pipe Arch Culvert. Research Report. TRRL Res Rep 1985:28 p.
- [10] Pettersson L. Full Scale Tests and Structural Evaluation of Soil Steel Flexible Culverts with Low Height of Cover [PhD thesis]. KTH Royal Institute of Technology, 2007.
- [11] Bayoglu Flener E. Testing the response of box-type soil-steel structures under static service loads. J Bridg Eng 2010;15:90-7. doi: 10.1061/(ASCE)BE.1943-5592.0000041.
- [12] Elshimi TM. Three-Dimensional Nonlinear Analysis of Deep-Corrugated Steel Culverts [PhD thesis]. Ontario, Canada: Queen’s University, 2011.
- [13] Brachman RWI, Moore ID, Mak AC. Ultimate limit state of deep-corrugated large-span box culvert. Transp Res Rec 2010:55-61. doi: 10.3141/2201-07.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc5c770b-1c49-4a3b-b72b-6ff212d14151