PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Pool boiling of nanofluids on rough and porous coated tubes: experimental and correlation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with pool boiling of water-Al2O3 and water-Cu nanofluids on rough and porous coated horizontal tubes. Commercially available stainless steel tubes having 10 mm outside diameter and 0.6 mm wall thickness were used to fabricate the test heater. The tube surface was roughed with emery paper 360 or polished with abrasive compound. Aluminium porous coatings of 0.15 mm thick with porosity of about 40% were produced by plasma spraying. The experiments were conducted under different absolute operating pressures, i.e., 200, 100, and 10 kPa. Nanoparticles were tested at the concentration of 0.01, 0.1, and 1% by weight. Ultrasonic vibration was used in order to stabilize the dispersion of the nanoparticles. It was observed that independent of operating pressure and roughness of the stainless steel tubes addition of even small amount of nanoparticles augments heat transfer in comparison to boiling of distilled water. Contrary to rough tubes boiling heat transfer coefficient of tested nanofluids on porous coated tubes was lower compared to that for distilled water while boiling on porous coated tubes. A correlation equation for prediction of the average heat transfer coefficient during boiling of nanofluids on smooth, rough and porous coated tubes is proposed. The correlation includes all tested variables in dimensionless form and is valid for low heat flux, i.e., below 100 kW/m2.
Rocznik
Strony
3--20
Opis fizyczny
Bibliogr. 28 poz., il.
Twórcy
  • Gdańsk University of Technology, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] CHOI S.: Enhancing thermal conductivity of fluids with nanoparticles. Developments and Applications of Non-Newtonian Flows, ASME, FED. 231/MD-66(1995) 99-105.
  • [2] CIEŚLIŃSKI J.T., KACZMARCZYK T.: Pool boiling of water-Al2O3 and water-Cu nanofluids on horizontal smooth tubes. Nanosc. Res. Lett. (2011), 6-220, doi:10.1186/1556-276X.
  • [3] BARBER J., BRUTIN D., TADRIST L.: A review on boiling heat transfer enhancement with nanofluids. Nanosc. Res. Lett. (2011), 6:280.
  • [4] CIEŚLIŃSKI J.T.: Improved heat transfer to water boiling on tubes covered with porous metallic coatings. Arch. Thermodyn. 16(1995), 1-2, 93-101.
  • [5] CIEŚLIŃSKI J.T.: Nucleate pool boiling heat transfer of water from gas-thermally coated surfaces. Arch. Thermodyn. 13(1992), 1-4, 49-57.
  • [6] CIEŚLIŃSKI J.T.: An experimental study of nucleate pool boiling heat transfer from a flat horizontal plate covered with porous coatings. Arch. Thermodyn. 12(1991), 1-4, 69-76.
  • [7] WANG X.Q., MUJUMDAR A.S.: Heat transfer enhancement of nanofluids: A review. Int. J. Thermal Sci. 46(2007), 1-9.
  • [8] GODSON L., RAJA B., LAL D.M., WONGWISES S.: Enhancement of heat transfer using nanofluids - An overview. Renew. Sust. Energ. Rev. 14(2010), 629-641.
  • [9] DAS S.K., PUTRA N., ROETZEL W.: Pool boiling characteristics of nano-fluids. Int. J. Heat Mass Transf. 47(2003), 851-862.
  • [10] DAS S.K., PUTRA N., ROETZEL W.: Pool boiling of nano-fluids on horizontal narrow tubes. Int. J. Multiphase Flow 29(2003), 1237-1247.
  • [11] KHANDEKAR S., JOSHI Y.M., MEHTA B.: Thermal performance of closed two-phase thermosyphon using nanofluids. Int. J. Thermal Sci. 47(2008), 659-667.
  • [12] CHOPKAR M., DAS A.K., MANNA L, DAS P.K.: Pool boiling heat transfer characteristics of ZrO2-water nanofluids from a flat surface in a pool. Heat Mass Transf. 44(2008), 999-1004.
  • [13] SURIYAWONG A., WONGWISES S.: Nucleate pool boiling heat transfer characteristics of TiO2-water nanofluids at very low concentrations. Exp. Thermal Fluid Sci. 34(2010), 992-999.
  • [14] NARAYAN G. P., ANOOP K. B., DAS S. K.: Mechanism of enhancement/ deterioration of boiling heat transfer using stable nanoparticle suspensions over vertical tubes. J. Appl. Phys. 102(2007), 074317.
  • [15] Liu Z., XIONG J., BAO R.: Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface. Int. J. Multiphase Flow 33(2007), 1284-1295.
  • [16] YANG CH., Liu DA.: Pool boiling on plain and enhanced tubes of refrigerant R141b with nanoparticles. Proc. 5th Int Conf. on Multiphase Flow, ICMF-2004, Yokohama, No. 365.
  • [17] DAS S.K., PUTRA N., ROETZEL W.: Pool boiling characteristics of nano-fluids. Int. J. Heat Mass Transf. 47(2003), 851-862.
  • [18] CORNWELL K., HOUSTON S.D: Nucleate pool boiling on horizontal tubes: a convection-based correlation. Int. J. Heat Mass Transf. 37(1994), 303-309.
  • [19] SHI M. H., SHUAI M. Q., LAI Y. E., Li Y. Q., XUAN M.: Experimental study of pool boiling heat transfer for nanoparticle suspensions on a plate surface. Proc. 13th Int. Heat Transfer Conf., Sydney, 2006, BOI-06 (CD-ROM).
  • [20] ROHSENOW W.M.: A method of correlating heat transfer data for surface boiling liquids. ASME C 74(1952), 969-976.
  • [21] DAS S., BHAUMIK S.: A correlation for the prediction of heat flux for nucleate pool boiling heat transfer of nanofluid. Arab. J. Sci. Eng. doi: 10.1007/s13369-014-1081-z.
  • [22] STEPHAN K., ABDELSALAM M.: Heat transfer correlations for natural convection boiling. Int. J. Heat Mass Transf. 23(1980), 73-87.
  • [23] PENG H., DING G., Hu H.: Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid. Experimental Therm. Fluid Sci. 35(2011), 960-970.
  • [24] PAL P., BHAUMIK S.: Development of Theoretical Correlation for Prediction of Boiling Heat Transfer Using water-TiO2 Nanofluid. Proc. 2012 Int. Conf. on Environment, Energy and Biotechnology, IPCBEE 33(2012), IACSIT Press, Singapore.
  • [25] SURIYAWONG A., DALKILIC A.S., WONGWISES S.: Nucleate Pool Boiling Heat Transfer Correlation for TiO2-Water Nanofluids. J. ASTM Int. 9(2012), 5, ID JAI104409.
  • [26] CIEŚLIŃSKI J.T.: Nucleate pool boiling on porous metallic coatings. Exp. Therm. Fluid Sci. 25(2002), 557-564.
  • [27] LAKHERA V.J., GUPTA A., KUMAR R.: Investigation of coated tubes in cross-flow boiling. Int. J. Heat Mass Transf. 52(2009), 908-920.
  • [28] CIEŚLIŃSKI J.T., KRASOWSKI K.: Heat transfer during pool boiling of water, methanol and R141b on porous coated horizontal tube bundles. J. Enhanc. Heat Transf. 20(2013), 2, 165-177.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc5a883f-e780-4808-8a4e-8ae8bfc20002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.