Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we introduce the notion of h-stability for set-valued differential equations. Necessary and sufficient conditions are established by using Lyapunov theory. Then, based on the obtained results, we study the ℎ-stability of perturbed and cascaded systems. Finally, an example illustrates the proposed theorems.
Czasopismo
Rocznik
Tom
Strony
761--788
Opis fizyczny
Bibliogr. 37 poz., wzory
Twórcy
autor
- Department of Mathematics, Faculty of Sciences of Sfax, Route Soukra Km 4, BP 802, 3018, Sfax, Tunisia
- The IBISC laboratory, University of Evry Val d’Essonne, University of Paris Saclay University, 40, rue de Pelvoux, 91020, Evry Courcouronnes, France
autor
- Department of Mathematics, Faculty of Sciences of Gafsa, Sidi Ahmed Zarroug, 2112, Gafsa, Tunisia
autor
- Department of Mathematics, Faculty of Sciences of Gafsa, Sidi Ahmed Zarroug, 2112, Gafsa, Tunisia
autor
- The IBISC laboratory, University of Evry Vald’Essonne, University of Paris Saclay University, 40, rue de Pelvoux, 91020, Evry Courcouronnes, France
autor
- The LaMME laboratory, UMR CNRS 8071, University of Evry Val d’Essonne, University of Paris Saclay, 23 Bd de France, 91037, Evry CEDEX, France
Bibliografia
- [1] Z.S. Athanassov: Perturbation theorems for nonlinear systems of ordinary differential equations. Journal of Mathematical Analysis Applications, 86(1), (1982), 194-207. DOI: 10.1016/0022-247X(82)90264-5.
- [2] J.P. Aubin and H. Frankowska: Set-valued Analysis. Boston, Birkhauser, 1990.
- [3] T.G. Bhaskar, V. Lakshmikantham and J.V. Devi: Nonlinear variation of parameters formula for set differential equations in a metric space. Nonlinear Analysis: Theory, Methods and Applications, 63(5-7), (2005), 735-744. DOI: 10.1016/j.na.2005.02.036.
- [4] A.N. Chadaram, D.B. Dhaigude and V.D. Jonnalagadda: Stability results in terms of two measures for set differential equations involving causal operators. European Journal of Pure and Applied Mathematics, 10(4), (2017), 645-654.
- [5] A. Chaillet and A. Lorìa: Uniform global practical asymptotic stability for time-varying cascaded systems. European journal of control, 12(6), (2006), 595-605. DOI: 10.3166/ejc.12.595-605.
- [6] S.K. Choi and N.J. Koo: Variationally stable difference systems by 𝑛∞-similarity. Journal of Mathematical Analysis and Applications, 249(2), (2000), 553-568. DOI: 10.1006 jmaa.2000.6910.
- [7] S.K. Choi, N.J. Koo and H.S. Ryu: ℎ-stability of differential systems via 𝑡∞-similarity. Bulletin of the Korean Mathematical Society, 34(3), (1997), 371-383.
- [8] S.K. Choi, Y.H. Goo and N.J. Koo: Lipschitz and exponential asymptotic stability for nonlinear functional systems. Dynamic Systems and Applications, 6 (1997), 397-410.
- [9] S.K. Choi, Y.H. Goo and N.J. Koo: ℎ-Stability of dynamic equations on time scales with nonregressivity. Abstract and Applied Analysis, 2008, (2008). DOI: 10.1155/2008/632473.
- [10] M. Corless and L. Glielmo: New converse Lyapunov theorems and related results on exponential stability. Mathematics of Control, Signals and Systems, 11(1), (1998), 79-100. DOI: 10.1007/BF02741886.
- [11] F.S. De Blasi and F. Iervolino: Equazioni differenziali con soluzioni a valore compatto convesso. Bollettino dell’Unione Matematica Italiana, 2(4-5), (1969), 491-501 (in Italian).
- [12] J. De Kleer and J.S. Brown: A qualitative physics based on confluences. Artificial intelligence, 24(1-3), (1984), 7-83. DOI: 10.1016/0004-3702(84)90037-7.
- [13] A. Geletu: Introduction to topological spaces and set-valued maps. Lecture notes. Ilmenau, Germany: Institute of Mathematics, Department of Operations Research and Stochastics, Ilmenau University of Technology, 2006.
- [14] B. Ghanmi: On the practical h-stability of nonlinear systems of differentia equations. Journal of Dynamical and Control Systems, 25(4), (2019), 691-713. DOI: 10.1007/s10883-019-09454-5.
- [15] M. Hukuhara: Intégration des applications mesurables dont la valeur est un compact convexe. Funkcialaj Ekvacioj, 10(3), (1967), 205-223 (in French).
- [16] C.M. Kellet: Classical converse theorems in Lyapunov’s second method. Discrete and Continuous Dynamical Systems Series B, 20(8), (2015), 2333-2360. DOI: 10.3934/dcdsb.2015.20.xx.
- [17] H.K. Khalil: Nonlinear Systems. Third edition. Prentice Hall, 2002.
- [18] T.A. Komleva and A.V. Plotnikov: Differential inclusions with Hukuhara derivative. Nonlinear Oscillations, 10(2), (2007), 229-245. DOI: 10.1007/s11072-007-0017-x.
- [19] J. Kurzweil: On the reversibility of the first theorem of Lyapunov concerning the stability of motion. Czechoslovak Mathematical Journal, 5(80), (1955), 382-398. DOI: 10.21136/CMJ.1955.100154.
- [20] V. Lakshmikantham, T.G. Bhaskar and J.V. Devi: Theory of Set Differential Equations in Metric Spaces. Cambridge Scientific Publishers, 2006.
- [21] V. Lakshmikantham and S.G. Deo: Method of Variation of Parameters for Dynamic Systems. CRC Press, 1998.
- [22] V. Lakshmikantham and S. Leela: Differential and Integral Inequalities, Theory and Applications Volume I: Ordinary Differential Equations. Academic Press, 1969. DOI: 10.1201/9780203747452.
- [23] V. Lakshmikantham, V.M. Matrosov and S. Sivasundarm: Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems. 63 Springer Science and Business Media, 1991. DOI: 10.1007/978-94-015-7939-1.
- [24] K. Lancaster: The theory of qualitative linear systems. Econometrica: Journal of the Econometric Society, 33(2), (1965), 395-408. DOI: 10.2307/1909797.
- [25] K. Lancaster: The solution of qualitative comparative static problems. The Quarterly Journal of Economics 80(2), (1966), 278-295. DOI: 10.2307/1880693.
- [26] A.A. Martynyuk: Qualitative Analysis of Set-valued Differential Equations. Springer Nature Switzerland AG, Birkhauser, Cham, 2019. DOI: 10.1007/978-3-030-07644-3.
- [27] A.A. Martynyuk and I.M. Stamova: Stability analysis of set trajectories for families of impulsive equations. Applicable Analysis, 98(4), (2019), 828-842. DOI: 10.1080/00036811.2017.1403589.
- [28] J.L. Massera: On Liapounoff’s conditions of stability. Annals of Mathematics, 50(2), (1949), 705-721. DOI: 10.2307/1969558.
- [29] M. Pinto: Perturbations of asymptotically stable differential systems. Analysis, 4(1-2), (1984), 161-175. DOI: 10.1524/anly.1984.4.12.161.
- [30] M. Pinto: Stability of nonlinear differential systems. Applicable Analysis, 43(1-2), (1992), 1-20. DOI: 10.1080/00036819208840049.
- [31] L. Stefanini: A generalization of Hukuhara difference. Soft Methods for Handling Variability and Imprecision, 48, (2008), 203-210. DOI: 10.1007/978-3-540-85027-4_25.
- [32] L. Stefanini: A generalization of Hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy sets and systems, 161(11), (2010), 1564-1584. DOI: 10.1016/j.fss.2009.06.009.
- [33] Stefanini and B. Bede: Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Analysis: Theory, Methods and Applications, 71(3-4), (2009), 1311-1328. DOI: 10.1016/j.na.2008.12.005.
- [34] Stefanini and B. Bede: Some Notes on Generalized Hukuhara Differentiability of Interval Valued Functions and Interval Differential Equations. 2012, Technical Report, Working Papers Series in Economics, Mathematics and Statistics. Available online http://ideas.repec.org/f/pst233.html (accessed on 16 March 2019).
- [35] J. Trumpf and R. Mahony: A converse Liapunov theorem for uniformly locally exponentially stable systems admitting carathèodory solutions. IFAC Proceedings Volumes, 43(14), (2010), 1374-1378. DOI: 10.3182/20100901-3-IT-2016.00090.
- [36] N.N. Tu and T.T. Tung: Stability of set differential equations and applications. Nonlinear Analysis: Theory, Methods and Applications, 71(5-6), (2009), 1526-1533. DOI: 10.1016/j.na.2008.12.045.
- [37] T. Yoshizawa: Stability Theory by Lyapunov’s Second Method. Publications of the Mathematical Society of Japan, (1966).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc52665b-536a-4f61-82b5-d645ab9e87b2