PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Flotation of sulfide copper ore from Legnica-Glogow Copper Basin (Poland) in process water of different salinities

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The composition of water has a significant impact on the flotation. With the increasing salinity of process waters used at the Division of Concentrator Plant (KGHM Polska Miedz SA), it is necessary to investigate the effect of changes in water composition on the flotation of copper ore components from the Legnica-Glogow Copper Basin area (Poland). In this study, the effect of changing water salinity on the flotation efficiency of copper and organic carbon in sulfide copper ore from the Polkowice Concentrator Plant was investigated. In the study, water taken from the processing plant was used. The mineralization and chloride concentration were 54.5 g/L and 23.46 g/L, respectively. The salinity of the process water was changed by concentrating and diluting water (60, 80, 120, 140%), as well as by adding chloride ions (5 and 10 g/L). Based on the study, it was found that with the increase in mineralization, also the chloride ion content of the water is increased, worse flotation of copper carriers and organic carbon was observed at the cleaning flotation stage. Moreover, it was observed that the more the salinity of the process water is increased, the more the efficiency of the rougher flotation improves – while increasing this salinity, the content and loss of Cu in the tailings from this stage decrease. The obtained research results indicate the need to monitor the salinity level of process waters and their composition and perhaps, in the future, the need for modification in this area.
Czasopismo
Rocznik
Tom
Strony
87--104
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
  • Department of Mining, Faculty of Geoengineering, Mining and Geology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Department of Mining, Faculty of Geoengineering, Mining and Geology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • ALVAREZ J., CASTRO S., 1976, Flotation of chalcocite and chalcopyrite in seawater and salty water, Proc. IV EncontroNacional de Tratamento de Minerios, Vol. 1, Săo José Dos Campos, Brazil, 6.
  • BAKALARZ A., 2019, Chemical and Mineral Analysis of Flotation Tailings from Stratiform Copper Ore from Lubin Concentrator Plant (SW Poland), Min. Proc. Ext. Met. Rev., 40 (6), 437–446, https://doi.org/ 10.1080/08827508.2019.1667778.
  • BAKALARZ A., DUCHNOWSKA M., 2024, Analysis of the Possibility of Copper Recovery from Flotation Stratiform Copper Ore Tailings, Min. Proc. Ext. Met. Rev., 45 (8), 943–949, https://doi.org/ 10.1080/08827508.2024.2316060.
  • BAKALARZ A., DUCHNOWSKA M., LUSZCZKIEWICZ A., 2017, Influence of liberation of sulphide minerals on flotation of sedimentary copper ore, E3S Web of Conferences, 18, 01025, DOI: 10.1051/ e3sconf/20171801025.
  • BAKALARZ A., DUCHNOWSKA M., LUSZCZKIEWICZ A., 2017, The effect of process water salinity on flotation of copper ore from Lubin mining region (SW Poland), E3S Web of Conferences 18, 01007, DOI: 10.1051/e3sconf/20171801007.
  • CASTRO S., 2012, Challenges in flotation of Cu-Mo sulfide ores in seawater, In: Water in Mineral Processing, J. Drelich (Ed.), SME, 29–40.
  • CASTRO S., LASKOWSKI J.S., 2011, Froth Flotation in Saline Water, KONA Powder and Particle Journal, No. 29, 4–15, https://www.jstage.jst.go.jp/article/kona/29/0/29_2011005/_pdf
  • CASTRO S., MIRANDA C., TOLEDO P., LASKOWSKI J.S., 2013, Effect of frothers on bubble coalescence and foaming in electrolyte solutions and seawater, Int. J. Miner. Process., 124, 8–14, https:// doi.org/10.1016/j.minpro.2013.07.002
  • CRAIG V.S.J., NINHAM B.W., PASHLEY R.M., 1993, The effect of electrolytes on bubble coalescence in water, J. Phys. Chem., 97, 10192–10197.
  • CRUZ C., RAMOS J., ROBLES P., LEIVA W.H., JELDRES R.I., CISTERNAS L.A., 2020, Partial seawater desalination treatment for improving chalcopyrite floatability and tailing flocculation with clay content, Miner. Eng., 151, 106307, https://doi.org/10.1016/j.mineng.2020.106307
  • HIRAJIMA T., SUYANTARA G.P.W., ICHIKAWA O., ELMAHDY A.M., MIKI H., SASAKI K., 2016, Effect of Mg2+ and Ca2+ as divalent seawater cations on the floatability of molybdenite and chalcopyrite, Miner. Eng., 96–97, 83–89, http://dx.doi.org/10.1016/j.mineng.2016.06.023
  • HUANG P., LASKOWSKI J.S., ZHENG H., LU Q., 2013, Use of flocculants in high ionic strength process water. Part I., Flocculation in Solid/liquid Separation, 9th UBC-McGill-UA Symposium, Montreal.
  • HWANG M., MU Y., CAO L., PENG Y., 2024, The influence of NaCl on xanthate adsorption on chalcopyrite surface and chalcopyrite flotation, Miner. Eng., 218, 109026, https://doi.org/10.1016/ j.mineng.2024.109026
  • JELDRES R.I., CALISAYA D., CISTERNAS L.A., 2015, Impact of seawater with calcium and magnesium removal on floatability of copper-molybdenum ores, Minerals Engineering. Int. Conf., Flotation 2015, Cape Town, South Africa.
  • JELDRES R.I., FORBES L., CISTERNAS L.A., 2016, Effect of Seawater on Sulfide Ore Flotation: A Re-view, Min. Proc. Ext. Met. Rev., 37 (6), https://doi.org/10.1080/08827508.2016.1218871
  • JOHNSON N.W., 1972, The flotation behaviour of some chalcopyrite ores, PhD Thesis, The University of Queensland, Brisbane, Australia.
  • KGHM, 2025, https://kghm.com/pl, Water management, mining and beneficiation.
  • KIJEWSKI P., LESZCZYNSKI R., 2010, Organic carbon in copper ores – importance and problems, The Bulletin of The Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, 79, 131–146 (in Polish), http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article- AGHM-0023-0016.
  • KONIECZNY A., PAWLOS W., KRZEMINSKA M., KALETA R., KURZYDLO P., 2013, Evaluation of organic carbon separation from copper ore by pre-flotation, Physicochem. Probl. Miner. Process., 49 (1), 189–201, http://dx.doi.org/10.5277/ppmp130117
  • Kowalska M., 1976, Investigation of the influence of Odra River water on the flotation results of Polkowice ore (Badanie wpływu wody z rzeki Odry na wyniki flotacji rudy polkowickiej), Study report, ZD Cuprum in Lubin, no. 3/TP/76 (in Polish).
  • KOWALSKA M., 1978, Influence of process water quality on upgrading parameters at Rudna Concentrator Plant [Wpływ jakości wody technologicznej na wskaźniki wzbogacania w ZG ZWR Rudna], Study report, ZD Cuprum in Lubin (in Polish).
  • KUBIK R., BAKALARZ A., DUCHNOWSKA M., 2018, Characteristics of the processing products from Polish copper ores in terms of the quality of concentrates and wastes composition, based on mineralogical analyzes, International Multidisciplinary Scientific GeoConference: SGEM 2018, 18 (1.4), 19–26.
  • KUCHA H., 2007, Mineralogy and geochemistry of the Lubin-Sieroszowice orebody, Biuletyn Panstwowego Instytutu Geologicznego, 423, 77–94 (in Polish).
  • KURNIAWAN A.U., OZDEMIR O., NGUYEN A.V., OFORI P., FIRTH B., 2011, Flotation of coal particles in MgCl2, NaCl, and NaClO3 solutions in the absence and presence of Dowfroth 250, Int. J. Miner. Process., 98, 137–144, https://doi.org/10.1016/j.minpro.2010.11.003
  • LAPLANTE A., KAYA M., SMITH H., 1989, The effect of froth on flotation kinetics – a mass transfer approach, Miner. Process. Extr. Metall. Rev., 5, 147–168, https://doi.org/10.1080/08827508908952648.
  • LASKOWSKI J., 1969, Physical chemistry in the mechanical processing of minerals [Chemia fizyczna w procesach mechanicznej przeróbki kopalin], Śląsk Publishing House, Katowice (in Polish).
  • LASKOWSKI J., LUSZCZKIEWICZ A., 1989, Beneficiation of mineral resources [Wzbogacanie surowców mineralnych], Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 113–152 (in Polish).
  • LASKOWSKI J.S., CASTRO S., GUTIERREZ L., 2019, Flotation in Seawater, Mining. Metall. Explor., 36, 89–98, https://doi.org/10.1007/s42461-018-0018-6
  • LASKOWSKI J.S., CASTRO S., RAMOS O., 2013, Effect of seawater main components on frothability in the flotation of Cu-Mo sulfide ore, Physicochem. Probl. Miner. Process., 50, 17–29, http://dx.doi.org/ 10.5277/ppmp140102
  • LI C., SOMASUNDARAN P., 1993, Reversal of bubble charge in multivalent inorganic salt solutions effect of lanthanum, Colloid Interface Sci., 81, 13–15.
  • LIANG Y., HILAL N., LANGSTON P., STAROV V., 2007, Interaction forces between colloidal particles in liquid: theory and experiment, Adv. Colloid Interf. Sci., 134, 151–166, https://doi.org/ 10.1016/j.cis.2007.04.003
  • LUSZCZKIEWICZ A., CHMIELEWSKI T., KONIECZNY A., 2012, Leaching and flotation of concentrate and middlings in flotation circuits of carbonate-shale copper ores, XXVI International Pro-cessing Congress (IMPC) 2012. Proceedings, 24–28 September, New Delhi, India, Paper no. 302, 03067–03075.
  • LUSZCZKIEWICZ A., DRZYMALA J., HENC T., KONOPACKA Z., DUCHNOWSKA M., 2011, Determination of the influence of chemical compounds contained in industrial waters on the upgrading process in O/ZWR [Określenie wpływu związków chemicznych zawartych w wodach przemysłowych na proces wzbogacania w O/ZWR], Study report, no. S-42/2011, Wrocław University of Science and Technology, Institute of Mining (in Polish).
  • LUSZCZKIEWICZ A., KONIECZNY A., KASINSKA-PILUT E., DRZYMALA J., 2015, Characteristics of waters used for flotation in O/ZWR KGHM Polska Miedź S.A. [Charakterystyka wód stosowanych do flotacji w O/ZWR KGHM Polska Miedź S.A.], Materiały III Polskiego Kongresu Górniczego, Mineralurgia i wykorzystanie surowców mineralnych, J. Drzymala, P.B. Kowalczuk (Eds.), 14–16 September 2015, Wrocław, 28–34 (in Polish).
  • MARRUCCI G., NICODEMO L., 1967, Coalescence of gas bubbles in aqueous solutions of inorganic electrolytes, Chem. Eng. Sci., 22, 1257–1265, https://doi.org/10.1016/0009-2509(67)80190-8
  • OSTROWSKI K., BAKALARZ A., 2019, Influence of grinding on flotation of industrial semi-product from sedimentary copper ore upgrading process, IOP Conference Series: Materials Science and Engineering, 641, 012026, doi: 10.1088/1757-899X/641/1/012026.
  • OZDEMIR O., 2013, Specific Ion Effect Of Chloride Salts On Collectorless Flotation Of Coal, Physicochem. Probl. Miner. Process., 49 (2), 511–524, http://dx.doi.org/10.5277/ppmp130212
  • OZDEMIR O., TARAN E., HAMPTON M.A., KARAKASHEV S.I., NGUYEN A.V., 2009, Surface chemistry aspects of coal flotation in bore water, Int. J. Miner. Process., 92 (3–4), 177–183, https:// doi.org/10.1016/j.minpro.2009.04.001.
  • PAULSON O., PUGH R.J., 1996, Flotation of inherently hydrophobic particles in aqueous solutions of inorganic electrolytes, Langmuir, 12 (20), 4808–4813.
  • PENG Y., ZHAO S., 2011, The effect of surface oxidation of copper sulfide minerals on clay slime coating in flotation, Miner. Eng., 24, 1687–1693, doi: 10.1016/j.mineng.2011.09.007.
  • PIESTRZYNSKI A., 2007, Ore mineralisation [Okruszcowanie], Monografia KGHM Polska Miedz S.A., A. Piestrzynski, A. Banaszak and M. Zaleska-Kuczmierczyk (Eds.), Lubin, 167–196 (in Polish).
  • PUGH R.J., WEISSENBORN P., PAULSON O., 1997, Flotation in inorganic electrolytes; the relation-ship between recover of hydrophobic particles, surface tension, bubble coalescence and gas solubility, Int. J. Miner. Process., 51, 125–138, https://doi.org/10.1016/S0301-7516(97)00021-5
  • QUINN J.J., KRACHT W., GOMEZ C.O., GAGNON C., FINCH J.A., 2007, Comparing the effect of salts and frother (MIBC) on gas dispersion and froth properties, Miner. Eng., 20, 1296–1302, https:// doi.org/10.1016/j.mineng.2007.07.007.
  • QUINN J.J., SOVECHLES J.M., FINCH J.A., WATERS K.E., 2014, Critical coalescence concentration of inorganic salt solutions, Miner. Eng., 58, 1–6, https://doi.org/10.1016/j.mineng.2013.12.021
  • RAO K.H., FORSSBERG K.S.E., 1997, Mixed collector systems in flotation, J. Miner. Process., 51 (1–4), 67–79, https://doi.org/10.1016/S0301-7516(97)00039-2
  • RATTANAKAWIN C., HOGG H., 2001, Aggregate size distributions in flocculation, Colloids Surf. A, 177, 87–98, https://doi.org/10.1016/S0927-7757(00)00662-2
  • TRONCOSO P., SAAVEDRA J.H., ACUÑA S.M., JELDRES R., CONCHA F., TOLEDO P.G., 2014, Nanoscale adhesive forces between silica surfaces in aqueous solutions, J. Colloid Interface Sci., 424, 56–61, https://doi.org/10.1016/j.jcis.2014.03.020
  • VEKI L., 2013, The use of seawater as process water in concentration plant and the effects on the flotation performance of Cu-Mo ore, Master’s thesis, Degree Programme of Process Engineering, University of Oulu, Faculty of Technology.
  • WILK Z., BOCHENSKA T., 2003, Hydrogeology of Polish mineral deposits and mining water problems [Hydrogeologia polskich złóż kopalin i problemy wodne górnictwa], AGH University Press, Kraków, 17–187 (in Polish).
  • YEPSEN R., GUTIERREZ L., LASKOWSKI J., 2019, Flotation behavior of enargite in the process of flotation using seawater, Miner. Eng., 142, 105897, https://doi.org/10.1016/j.mineng.2019.105897
  • ZHAO S., PENG Y., 2014, Effect of electrolytes on the flotation of copper minerals in the presence of clay minerals, Miner. Eng., 66–68, 152–156, http://dx.doi.org/10.1016/j.mineng.2014.04.024.
  • ZMUDZINSKI K., LEKKI J., 1967, Studies on the influence of mine water composition in the Legnica- -Gologów Copper Basin on copper ore flotation [Badania nad wpływem składu wód kopalnianych w Legnicko-Głogowskim Okręgu Miedziowym na flotację rud miedzi], Study report, no. 1216/67, Zakład Przeróbki Rud – Instytut Metali Nieżelaznych, Gliwice (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc4c364a-eb8d-43b4-bbb6-a4c948d287e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.