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Abstract

Text-based CAPTCHA is a convenient and effective safety mechanism that has been
widely deployed across websites. The efficient end-to-end models of scene text recog-
nition consisting of CNN and attention-based RNN show limited performance in solving
text-based CAPTCHA. In contrast with the street view image and document, the charac-
ter sequence in CAPTCHA is non-semantic. The RNN loses its ability to learn the seman-
tic context and only implicitly encodes the relative position of extracted features. Mean-
while, the security features, which prevent characters from segmentation and recognition,
extensively increase the complexity of CAPTCHAs. The performance of this model is
sensitive to different CAPTCHA schemes. In this paper, we analyze the properties of the
text-based CAPTCHA and accordingly consider solving it as a highly position-relative
character sequence recognition task. We propose a network named PosConv to leverage
the position information in the character sequence without RNN. PosConv uses a novel
padding strategy and modified convolution, explicitly encoding the relative position into
the local features of characters. This mechanism of PosConv makes the extracted features
from CAPTCHASs more informative and robust. We validate PosConv on six text-based
CAPTCHA schemes, and it achieves state-of-the-art or competitive recognition accuracy
with significantly fewer parameters and faster convergence speed.

Keywords: deep neural network, position encoding CNN, text-based CAPTCHA recog-
nition, character recognition

1 Introduction

CAPTCHA, automatically identifying machine
programs and human users [18], is an effective
mechanism to block the operations from bots. With
the development of automatic scripting techniques,
most websites have to use this security mechanism
to resist malicious attacks or resource abuse such as
brute-force attacks, bulk registration, and automatic
voting. While a wide variety of CAPTCHA types
have been proposed, the text-based CAPTCHA is

the predominant scheme considering the superior
usability and flexibility [21]. Correspondingly, the
recognition of text-based CAPTCHA remains a sig-
nificant research topic for it helps to obsolete the
vulnerable CAPTCHA schemes and ensures that
the deployed schemes are effective and can be trust-
worthy.

In CAPTCHAS, the character sequences are de-
signed to be segmentation-resistant. The strokes of
characters are connected or even overlapped, and
the complicated background with dot and line noise
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blurs the boundary of characters. Since support
vector machine and multi-layer perceptron can ac-
curately recognize the single character once it is
taken apart from the sequence [4], the previous
researches focus on the segmentation algorithms
[9, 20, 13, 8]. However, the methods based on
the two-stage framework consisting of segmenta-
tion and recognition are sensitive to the background
texture and shape of characters. Despite effec-
tiveness for certain schemes, the performance falls
sharply when the CAPTCHA on the target website
is updated.

Recently, many works have been proposed to si-
multaneously localize and recognize text in natural
scene images within one-stage [19, 14, 12]. Com-
pared with the two-stage framework, the end-to-end
neural networks avoid intermediate processes, in-
cluding preprocessing, segmentation, and postpro-
cessing. The architecture typically consists of a
convolutional neural network and recurrent neural
network, in which CNN is used as an encoder to
extract features from the input image and the fol-
lowing RNN decodes the features to the prediction
sequence.

The method used to recognize scene text is also
applied to solve connected text-based CAPTCHAs.
An end-to-end model based on CNN and attention-
based RNN is proposed to attack real-world text
CAPTCHAs [23]. However, this network structure
that is proven efficient in scene text recognition is
still limited in solving CAPTCHA:s.

Firstly, this hierarchical architecture is rela-
tively large, in which the number of learnable pa-
rameters approaches tens of millions. To ensure
the generalization of the model, a large volume
of manually-labeled real CAPTCHAs is required
to be collected. In addition, the embedded secu-
rity features, such as character overlapping, distor-
tion, rotation, and noisy interference, immensely
expand the diversity of character texture. Conse-
quently, the performance of the prior model applied
in CAPTCHA recognition is sensitive to different
schemes. To improve the accuracy of CAPTCHA
recognition, the extracted features are required to
be more informative and robust.

In this paper, we analyze the property of the
character of text-based CAPTCHA and consider
solving CAPTCHA as a highly position-relative
and non-semantic character sequence recognition

task. For the semantic absence, we hypothesize
that the RNN following the CNN in the end-to-
end network only learns the relative position of fea-
tures and compensates for the loss of position in-
formation in classic convolutional layers. To verify
the hypothesizes, we propose a novel architecture,
called a position-encoding convolutional (PosConv)
network. In PosConv, we remove the RNN and
merge the local features of characters with the rela-
tive position using a modified convolutional mecha-
nism. The overall architecture of PosConv is simple
and compact, containing only 1/8 parameters com-
pared with the prior network [23].

PosConv applies a novel padding strategy in
CNN layers to enhance the position-relative infor-
mation in extracted features. During the convolu-
tional computation on the feature maps, the local
perceptive fields are padded with position-relative
matrices in parallel, and correspondingly the con-
volutional kernel is expanded to fit the same size.
Further mathematical derivation proves that the
proposed padding mechanism can be implemented
with two asymmetric operations which make en-
coded position information adaptive and learnable.

We tested PosConv on 6 text-based
CAPTCHAs including a public available
CAPTCHA scheme from the python library and 5
real schemes on popular websites (Baidu, NetEase,
Sina, eBay, and Sohu). These schemes are sophis-
ticated and cover diverse security features. Ex-
perimental results show that PosConv achieves
state-of-the-art or competitive performance on
all the schemes with significantly fewer labeled
CAPTCHASs required in the training stage.

The rest of the paper is organized as fol-
lows. Section 2 introduces the properties of text-
based CAPTCHAs and the prior methods to solve
CAPTCHAs. Section 3 presents the proposed po-
sition encoding methods and the PosConv network
is detailed in Section 4. In Section 5, we evaluate
the PosConv on different CAPTCHA schemes and
analyze the performance. Section 6 concludes the

paper.
2 Background

Text-based CAPTCHA is an important security
mechanism to protect websites from malicious at-
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Table 1. CAPTCHASs on real popular websites embedded with different security features.

CAPTCHA
Scheme
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tacks. In this section, we will introduce the evolving
properties of the text-based schemes, and the prior
methods proposed to solve them.

2.1 Security Feature

Early schemes of text-based CAPTCHASs sim-
ply grouped a few characters and are easily recog-
nized. To tell the automatic script and the human
apart, security features are introduced to increase
the complexity and variability of the character se-
quence [1]. The function of security features can be
divided into anti-recognition and anti-segmentation.

Anti-recognition features are used to make the
shape of characters distorted. The characters in
CAPTCHAs vary in fonts, sizes, and thickness. Be-
sides, the image processing methods, such as affine
transformation and blurring, are also employed to
make the shape of characters fickle [13].

Anti-segmentation features prevent the solving
methods from splitting the character sequence. The
CAPTCHAs are usually placed on a complicated
background, and the interval between characters
is reduced. As a result, the strokes of charac-
ters are connected or even overlapped, blurring the
boundary of characters in the sequence [7]. The
CAPTCHA schemes embedded with different secu-
rity features are shown in Table 1.

Anti-recognition

distortion

Anti-segmentation

rotation  background  noise overlap
v v
v
v v v v
v v v
v v v

Researches have demonstrated that the classifi-
cation methods can accurately recognize the sepa-
rate character [4]. Therefore, the anti-segmentation
feature is primary in text-based schemes to render
the schemes not vulnerable to automatic solving
methods.

2.2 Prior Solving Methods

The prior methods can be divided into two-stage
and end-to-end frameworks.

Two-stage methods consist of segmentation and
recognition. The performance of these methods
relies largely on the correctness of segmentation.
These methods observe certain schemes on pixel-
level and then craft the corresponding specific seg-
mentation algorithms. A method based on color fill-
ing and projection was proposed to handle the char-
acter sequence associated with consecutive noise
[20]. Edge and fuzzy logic segmentation was ap-
plied to overlapped characters without dot noise
[13], and the Log-Gabor filter was used to split
slightly connected characters with deformation and
rotation [9]. For Microsoft’s two-layer CAPTCHA,
the researchers presented a mixed segmentation
method based on the professional analysis of the
security feature: a customized algorithm to split
the hollow and solid characters and another to split
the upper and lower lines [8]. Two-stage methods
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shared the advantage that considerable performance
can be reached with small datasets. However, the
application range of the specific methods is rela-
tively narrow due to the limited generalization.

In contrast to the two-stage framework that con-
siders segmentation and recognition as two dis-
tinct tasks, the one-stage framework solves the
CAPTCHA in a single step. In prior works, the
end-to-end networks were proposed to take the
CAPTCHA image as the input instead of segmented
characters and predict the label sequence directly.

Researchers proposed a unified approach to rec-
ognizing arbitrary multi-digit numbers from Street
View imagery via a deep CNN [6]. The best per-
formance is achieved by the deepest architecture
that has 11 hidden layers. With this model, they
use millions of CAPTCHA images as the train-
ing set and reach 99.8% accuracy on transcrib-
ing the reCAPTCHA scheme. To solve CAPTH-
CAs requiring fewer labeled images, a model based
on a generative adversarial network was proposed.
In this method, a synthesis is trained to produce
CAPTCHAs similar to the target images, and a pre-
processing model is trained to remove the security
features. Note that a pre-defined parameter setting
is necessary to constrain the security feature space
covering the target CAPTCHA schemes [22]. The
end-to-end model which has been proven effective
in street view imagery was also utilized to recog-
nize CAPTCHAs. A network consists of CNN and
attention-based RNN achieves relatively higher per-
formance on CAPTCHAs deployed by 11 websites
[23]. However, this deep and hierarchical struc-
ture still contains tens of millions of learnable pa-
rameters. To avoid overfitting, a large volume of
manually-labeled real CAPTCHAs is required to
feed the model. Meanwhile, as the security features
are diverse, the performance of this model is sensi-
tive to different CAPTCHA schemes.

3 Method

In this section, we demonstrate the property of
character sequence in CAPTCHA and consider its
recognition as a highly position-relative task. To
make the extracted features more informative and
robust, a position encoding method is proposed to
leverage the position information of the character
sequence.

3.1 Position-Relative Property of Charac-
ter Sequence in CAPTCHA

Different from the text in document and street
view, the character sequence in CAPTCHA is non-
semantic. For the text-based CAPTCHA, effective
contextual information exists where the characters
are connected or overlapped. The connected-stroke
has a significant impact on the original shape and
leads to difficulty in recognition.

Some confusing examples and the correspond-
ing prediction are shown in Table 2. The ground
truth of the character is listed in the first column,
and the CAPTCHA samples are listed in the second
column. In the top row, the sequence of characters
is labeled as ‘J’, ‘A’, ‘N’, and ‘R’. For this example,
the character ‘N’ is sensitive to connected strokes
and easily recognized as ‘W’ or ‘M’. The probabil-
ity of the false prediction is relative to the position
that the character occurs. Intuitively, the probabil-
ity that ‘N’ is mistaken as ‘W’ descends when the
character occurs at the left-most position, and the
probability mistaken as ‘M’ descends at the right-
most position. Similarly, the vertical position of ‘N’
is relative to the robustness of the character and a
lower position reduces the probability of both mis-
takes. Meanwhile, some pairs of characters easily
cause connected-stroke confusion. The pair of ‘U’
and ‘J’ are recognized as ‘W’ in the second row.
The character ‘Y’ is mistaken as ‘I’ for ‘C’ on the
left absorbs its stroke in the third row.

Based on the examples of connected-stroke
confusion, we consider the recognition of text-
based CAPTCHA as a highly position-relative task.
The position-relative property of the character se-
quence, such as the absolute of the sensitive char-
acter and the relative position of easily-confusing
pairs, should be leveraged to solve CAPTCHAs.

3.2 Position Encoding Method

The concept of position encoding is introduced
in natural language processing tasks [17]. Because
all words of the input sequence are fed to the net-
work with no special order or position, position-
relative information is embedded in each word to
help the model incorporate the order of words.

Position encoding mechanism based on Con-
volutional Neural Networks (CNNSs) has also been
studied in prior works. In image recognition tasks,
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Table 2. Examples of connected-stroke confusion.
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Figure 1. The padding methods of classic CNN and PosConv.
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CNN extracts features with convolutional filters but
ignoring the corresponding position [15]. The clas-
sic CNN model is considered to be spatially agnos-
tic. However, recent work demonstrates that CNN
indeed learns to encode position information im-
plicitly [10]. This property of CNN mainly relies
on the zero-padding strategy that is widely adopted
in convolutional operations. The results show that
the model with larger kernel size and deeper layers
captures more position information.

The classic padding method is illustrated in Fig-
ure 1 (a). The zero-padding is implemented on the
borders as an anchor from which position informa-
tion is derived and eventually propagated to each
extracted feature as the filter slides across the en-
tire image. However, as the proportion of involved
zero-padding varies with the distance to the bor-
der, the encoded position information is inconsis-
tent among the local receptive fields. In Figure 1
(a), field A locating on the corner encodes signifi-
cantly richer position information than interior field
C via zero-padding. This position encoding is im-
plicit due to the underlying propagation of position
information. For field C, the extracted feature in-
volves no position information via zero-padding in
the current convolutional layer, and the position in-
formation is obtained through propagation from the
fields that locate nearer to the border.

The proposed network PosConv in this paper is
inspired by the conclusion that zero-padding intro-
duces the position information in CNN. Different
from the implicit position encoding, PosConv en-
codes position information into the extracted fea-
tures explicitly with a novel padding strategy and
modified convolutional operation. As illustrated in
Figure 1 (b), we firstly expand the convolution fil-
ters along with the horizontal and vertical direc-
tions, respectively. Then we pad the local recep-
tive fields synchronously to match the shape of ex-
panded filters. Instead of zero-padding, we use the
position of the padding block as the value. The
convolution filter in PosConv consists of the cen-
tral part and the expanded part. The central part
extracts the features from the previous layer similar
to the classic convolutional kernel. The size of the
central part is k x k and the padding size along the
horizontal and vertical direction is denoted as p.

3.3 Convolution in PosConv

PosConv uses asymmetric convolutions with
shape (k+2p) x 1 and 1 x (k+2p) as:

i-s+k+2p—1

I+1 v 1
yg,j ) = Z Wm—i's 'x;(n,)j + b;}n—i-s
m=i-s
I+1 n I+1) | (D
Zl(-,j ): Z Wi t(n )+bn i-s
n=i-s

xiy = Fbnz M),

LJ 2y

where W" and W" are the asymmetric convolutional
kernels. b* and b" are the corresponding bias. x(*)
denotes the padded local receptive field of layer /.
Batch normalization and ReLLU active function are
applied to yield x*'1) as the input of next layer. The
subscript i, j of the variables x, y, and z denote the
coordinate in the feature maps. Note that when con-
volution filters slice across the feature maps with
stride s, the position-relative padding may fall out-
side the image. We assign the padding value as -1.0
on the left/top, and 1.0 on the right/bottom.

The prior work [10] demonstrated that the en-
coded position information increases with the size
of zero-padding. In PosConv, the padding value is
set as coordinate value divided by the size of the
corresponding dimension, the asymmetric convolu-
tion along the horizontal direction can be written as:

I+k p
Sexp = Z W,,Cl_l "X+ Z an “Xl—m
m=I+1 m=1 (2)

P
+ Z W - Xiskcim+b,
m=

where x denotes the vector of features with length
k4 2p in the expanded receptive field. [ is the be-
ginning index of the convolved receptive field. The
first term denotes the weighted sum of the original
receptive field. The following terms denote the con-
volution on the padding blocks. According to the
distribution of padding values, S, can be rewritten
as:

P
Sexp =Sorg +1- g Y (WE+WE) +

m=1

1 14
+B£1m-(w§—w,,&)+b.

p 14
5 Y

3)

The convolution in the original receptive field
is replaced as S,,¢. As p, D, and k are constant, W”Ll
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and WR are the vectors of trainable parameters. Eq.
3 can be written as:

l
Sexp = Sorg + BWpos + bpos> (4)
where
C L R
WPOS =p Z (Wm +‘/Vm)
m=1
Pk or, 1y R L
bpos :b‘i‘? Z Wm +B Z m(Wm _Wm)
m=1 m=1
)

PosConv takes W,,s as a single trainable pa-
rameter to learn how much the position information
should be encoded to the receptive fields. Instead of
assigning the padding size p as a hyper-parameter
and the weights W% and WX as trainable parameter
vectors, we optimize the position-relative W), and
bpos via backpropagation directly. In this method,
the position information encoded into the extracted
features is adaptive, and few extra parameters are
involved.

4 Network Architecture

The architecture of PosConv is briefly illus-
trated in Figure 2. The main difference between
PosConv and the aforementioned end-to-end model
is the removal of RNN for the semantic absence
in the character sequence of CAPTCHA. Instead,
PosConv encodes the position information via the
modified convolution, not only leveraging the rel-
ative position between characters more efficiently
and compactly but significantly reducing the num-
ber of parameters compared with the prior hierar-
chical model. Another difference is the convolu-
tional kernel size used in PosConv is set as small as
I x3 and 3 x 1. In contrast with the large kernel
size used to capture more position information in
classic CNNs [10], we can accelerate computation
and further reduce the number of parameters.

In Figure 2, PosConv takes the CAPTCHA im-
age and its position map as the input. The asym-
metric convolutions are performed simultaneously
on the feature maps and the corresponding position
map. The 1 x 3 and 1 x 2p convolutional kernels
slice across the feature maps and the position map
synchronously. We encode the position information
into the extracted as the sum illustrated in Eq. 4 for

every receptive field. The max-pooling and ReLU
activation are uniformly performed on the sum of
one-dimensional convolutions.

In the PosConv architecture, the modified units,
which we refer to as position-encoding convolu-
tional layers, are stacked to extract more informa-
tive and robust features from the CAPTCHA im-
ages. The output is flattened and then fed to the
separate fully-connected layers corresponding to in-
dividual characters. Considering that the characters
in the CAPTCHA sequence are uniformly gener-
ated and subject to the same distribution, we share
the weights of all the fully-connected layers in the
network.

S Experiment

To demonstrate the effectiveness we test
PosConv on various connected text-based
CAPTCHA schemes in this section. Firstly, we use
a public CAPTCHA library to compare the model
with the prior end-to-end models. Additionally,
the effectiveness of the proposed position encod-
ing convolution is analyzed based on this dataset.
Then, we use PosConv to solve five complicated
text-based CAPTCHA schemes deployed on real
websites, evaluating our method more comprehen-
sively.

5.1 Performance Evaluation of PosConv

In this section, PosConv is evaluated on a con-
nected text-based CAPTCHA scheme, which is a
public library named Captcha 0.2.4 as shown in Ta-
ble 3. We use this library as the dataset for the rea-
son that real CAPTCHA schemes collected in prior
works are seldom released considering the security
of target websites. Meanwhile, the CAPTCHAs in-
dividually collected by researchers cannot be guar-
anteed consistent, and some schemes used in prior
work have been deprecated for the frequent website
update.

In this experiment, we evaluate the performance
of models as the depth increases. The channels of
convolutional layers are [32, 32, 64, 80, 96, 128,
192, 256] respectively. The kernel size is fixed as
3 x 3 in each layer. Batch normalization is imple-
mented before ReLU activation. The shapes of the
following separate fully-connected layers and soft-
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Figure 2. The overview architecture of PosConv.
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Table 3. Schemes of connected text-based CAPTCHAs used for evaluation.

Scheme sample size length Char categories
oozt OB : 2
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max layer are the same. We use Adam as the gra-
dient descent optimization algorithm with an initial
learning rate of 0.001, and a custom decay sched-
uler is used in which the rate reduces to [0.0005,
0.0001, 0.00005, 0.00001] according to the de-
crease of the loss.

The base in Figure 3 denotes the inception-v3
model, which is used as the backbone of all the
models. We use character recognition accuracy
to measure the performance and the result shows
that PosConv outperforms the attention-based RNN
model for all the depth of networks. The difference
is distinct when the network is relatively shallow.
The performance of the attention-based RNN model
is limited until the number of layers reaches 4 while
PosConv achieves approximately 90% recognition
accuracy when the network contains only 2 stacked
convolutional layers. This demonstrates that the
position-encoding convolution is efficient and ex-
tracts more informative and robust features.

Note that the depth of network only represents
the number of convolutional layers in attention-
based RNN model, and the following LSTM de-
coder is not involved. By contrast, PosConv has
the relatively smaller model size and significantly
fewer parameters, yielding advantages in solving
real CAPTCHAs described in Section 5.4 later.

5.2 The Effect of Position Encoding

In this Section, we compare PosConv with
the prior position encoding methods based on
CNN including PosENet [10] and CoordConv [11].
PosENet is the aforementioned network padding the
image on the border. We set the padding size as 2
which achieves the optimal performance [10]. The
CoordConv extends standard convolution with extra
channels which are filled with (constant, untrained)
coordinate information [11]. Note that the channel
for r coordinate is used in this experiment. As be-
fore, all the models use inception-v3 as the back-
bone and share the same hyper-parameters.

The performance of different position-encoding
methods are shown in Figure 3. The character ac-
curacy of PosConv improves smoothly and stably as
the depth increases, obviously superior to PosENet
and CoordConv. Meanwhile, Figure 4 shows that
the loss of PosConv reduces rapidly, and the train-
ing epochs before convergence are less. After 75

epochs, PosConv achieves the performance supe-
rior to all other well-trained models. Note that at
the very beginning of training, the loss of PosConv
reduces at a relatively slow rate. This is probably
because PosConv learns the direction of gradient
descent of the introduced trainable parameters W,
and b, on the initial stage. Then the loss reduces
rapidly in approximately 5-10 epochs and the per-
formance surpasses other models, proving the ef-
fectiveness of proposed position encoding convolu-
tional mechanism.

5.3 Attack Real CAPTCHAs

To evaluate PosConv more comprehensively,
we collect 5 CAPTCHA schemes from real web-
sites, including Sina, eBay, Sohu, Baidu, and
NetEase. These schemes cover various compli-
cated security features and are representative of
connected text-based CAPTCHAs. We collect the
images with a python script and use a data annota-
tion service to manually label them.

For each scheme, 1000 samples are used for
validation, 500 samples for testing, and the rest
for training. We use sequence accuracy as the
evaluation of the performance in attacking real
CAPTCHAs, requiring the model to recognize all
the characters in the sequence correctly simultane-
ously.

Different from the Captcha 0.2.4 library, the
datasets collected from real websites are limited in
data size. We set the L2 regularization penalty as
0.001 and label smoothing as 0.9 to regularize the
model. Meanwhile, we use the following data aug-
mentation: firstly, we randomly crop the image to
0.9 ratios and then rotate the image ranging from
—30° to 30°. Finally, we resize it to the initial size
with bilinear interpolation.

The sequence accuracy of PosConv and prior
CAPTCHA solvers are listed in Table 4. Note that
some schemes collected in prior work are depre-
cated due to frequent website updates. Only the
schemes remaining consistent and publicly acces-
sible are involved. For the given schemes, PosConv
achieves better or at lest competitive sequence ac-
curacy. The average recognition accuracy is above
90%, which means PosConv solves all the schemes
approximately in a single try. The performance
significantly exceeds the widely accepted standard
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Table 4. The sequence accuracy of PosConv and prior CAPTCHA solvers.

Website Baidu Sina
Poposed 96.0% 98.2%
model
Gao 44.2% 9.4%
Bursztein et al
Zi 95.8% 86.0%
Tang et al 57.0% 75.0%
Hussain et al.
Liu et al
Duan et al 96.8% 96.8%

for CAPTCHA security that one scheme is broken
when the attacker is able to reach a precision of at
least 1% [3].

5.4 Analysis of Solving Methods

In this Section we analyze the text-based
CAPTCHA recognition methods and explain the
advantages of PosConv in solving CAPTCHAs
from real websites.

The method proposed by Gao is based on a
hard-coded segmentation algorithm at pixel level
[9], achieving 44.2% and 58.8% accuracy on Baidu
and eBay, respectively. This scheme-specific attack
is sensitive to the texture of background and the
shape of characters. For the Sina scheme, the accu-
racy drops rapidly to 9.4%. Similarly, the methods
of Bursztein [2] and Tang [16] are based on segmen-
tation, which are relatively vulnerable to distortion
and deformation.

The end-to-end models take the CAPTCHA
image as the input and predict the character se-
quence directly, not requiring expert-designed seg-
mentation. Faster R-CNN used in Duan’s work
achieves a competitive accuracy in solving vari-
ous schemes of CAPTCHAs [5]. This work col-
lected a fine-annotated CAPTCHA dataset in which
the characters are manually marked with a bound-
ing box. Compared with the weakly supervised
learning methods, the method based on faster R-
CNN is labor-intensive and time-consuming. Zi
used an end-to-end model based on CNN and
attention-based RNN to attack Google CAPTCHA

Ebay Souhu Netease
97.2% 90.8% 92.6%
58.8%
51.2%
27.0%

67.7%
97.3% - 90%

[23], and the success rate is 87.9% and 98.3%
with 50,000 and 200,000 training samples, respec-
tively. In this network, CNN is used to extract lo-
cal features, and the attention-based RNN is used to
learn the position information of the non-semantic
character sequence. This model is further evalu-
ated on CAPTCHA schemes deployed by 11 web-
sites, achieving the accuracy ranging from 74.8%
to 97.3%. The PosConv proposed in our work re-
moves the RNN in the end-to-end model and uses a
novel position encoding convolution to extract the
informative and robust features. Compared with
Zi’s network containing 8.46 million parameters,
PosConv significantly reduces the number to 0.83
million.

6 Conclusion

In this paper, we propose an end-to-end model
named PosConv to solve connected text-based
CAPTCHAs. Considering the CAPTCHA recogni-
tion as a highly position-relative and non-semantic
character sequence recognition task, we remove the
RNN used in prior end-to-end models for scene text
recognition. Instead, we propose a position encod-
ing convolution in which a novel padding strategy
for local receptive fields is implemented to leverage
the position information in the character sequence.
We validate PosConv on six text-based CAPTCHA
schemes and it outperforms state-of-the-art meth-
ods and achieves competitive recognition accuracy
with significantly fewer parameters and faster con-
vergence speed.
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