PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The effect of water recovery on the ion flotation process efficiency

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study deals with nickel ions removal from dilute aqueous solution by ion flotation with emphasizing the process efficiency. The effect of collector structure on ion flotation efficiency and water recovery was evaluated using anionic collectors of sodium dodecyl sulfate (SDS) and functionalized graphene oxide by 2,6-diaminopyridine (AFGO). The results showed that process efficiency enhanced with the increase in pH and reached to complete removal at pH of 9 and 9.7 for SDS and AFGO, respectively. The AFGO showed the multifunctional bindings for complex formations with nickel ions. A coordinate bond may be formed between nickel ions and AFGO at the pH of 9 which increased nickel ion removal. The water recovery as a critical parameter that contributes to removal efficiency was significantly affected by the collector structure. The AFGO doesn’t have a frothing property and so decreases the water recovery during the process. The AFGO had significantly lower water recovery than SDS (almost threefold).
Rocznik
Strony
919--927
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran 158754413, Iran
autor
  • Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran 158754413, Iran
  • Department of Chemistry, Amirkabir University of Technology, Tehran 15916-34311, Iran
autor
  • Centre for Minerals Research, Department of Chemical Engineering, University of Cape Town, Private Bag Rondebosch, Cape Town 7700, South Africa
Bibliografia
  • AKDEMIR, Ü., SÖNMEZ, İ., 2003. Investigation of coal and ash recovery and entrainment in flotation. Fuel Process. Technol. 82, 1-9.
  • ANOOP KRISHNAN, K., AJMAL, K., FAISAL, A. K., LIJI, T. M., 2015. Kinetic and isotherm modeling of methylene blue adsorption onto kaolinite clay at the solid-liquid interface. Sep. Sci. Technol. 50, 1147-1157.
  • CHO, Y. S., LASKOWSKI, J., 2002. Effect of flotation frothers on bubble size and foam stability. Int. J. Miner. Process. 64, 69-80.
  • CILEK, E. C., 2009. The effect of hydrodynamic conditions on true flotation and entrainment in flotation of a complex sulphide ore. Int. J. Miner. Process. 90, 35-44.
  • DOYLE, F. M., 2003. Ion flotation—its potential for hydrometallurgical operations. Int. J. Miner. Process. 72, 387-399.
  • DOYLE, F. M., LIU, Z., 2003. The effect of triethylenetetraamine (Trien) on the ion flotation of Cu2+ and Ni2+. J. Colloid Interface Sci. 258, 396-403.
  • GEORGE, P., NGUYEN, A., JAMESON, G., 2004. Assessment of true flotation and entrainment in the flotation of submicron particles by fine bubbles. Miner. Eng. 17, 847-853.
  • GRAU, R. A., LASKOWSKI, J. S., HEISKANEN, K., 2005. Effect of frothers on bubble size. Int. J. Miner. Process. 76, 225-233.
  • GUPTA, A. K., BANERJEE, P., MISHRA, A., SATISH, P., 2007. Effect of alcohol and polyglycol ether frothers on foam stability, bubble size and coal flotation. Int. J. Miner. Process. 82, 126-137.
  • HASSANZADEH, A., KARAKAŞ, F., 2017. Recovery improvement of coarse particles by stage addition of reagents in industrial copper flotation circuit. J. Dispersion Sci. Technol. 38, 309-316.
  • HOSEINIAN, F. S., REZAI, B., KOWSARI, E., 2019a. Optimization and separation mechanism of Ni (II) removal from synthetic wastewater using response surface method. Int. J. Environ. Sci. Technol. 16, 4915-4924.
  • HOSEINIAN, F. S., REZAI, B., KOWSARI, E., 2018a. Effect of separation mechanism on the kinetics of Zn (II) flotation. Sep. Sci. Technol. 53, 2833-2839.
  • HOSEINIAN, F. S., REZAI, B., KOWSARI, E., 2018b. The main factors effecting the efficiency of Zn (II) flotation: Optimum conditions and separation mechanism. J. Environ. Manage. 207, 169-179.
  • HOSEINIAN, F. S., REZAI, B., KOWSARI, E., CHINNAPPAN, A., RAMAKRISHNA, S., 2020. Synthesis and characterization of a novel nanocollector for the removal of nickel ions from synthetic wastewater using ion flotation. Sep.Purif. Technol. 240, 116639.
  • HOSEINIAN, F. S., REZAI, B., KOWSARI, E., SAFARI, M., 2018c. Kinetic study of Ni (II) removal using ion flotation: effect of chemical interactions. Miner. Eng. 119, 212-221.
  • HOSEINIAN, F. S., REZAI, B., KOWSARI, E., SAFARI, M., 2019b. Effect of impeller speed on the Ni (II) ion flotation. Geosystem Engineering. 22, 161-168.
  • HOSEINIAN, F. S., REZAI, B., SAFARI, M., DEGLON, D., KOWSARI, E., 2019c. Effect of hydrodynamic parameters on nickel removal rate from wastewater by ion flotation. J. Environ. Manage. 244, 408-414.
  • JANG, E., JEONG, S., CHUNG, E., 2017. Application of three different water treatment technologies to shale gas produced water. Geosystem Engineering. 20, 104-110.
  • JI, S., DEMPSEY, B. A., YOO, K., 2011. The removal of arsenic ion in electro-coagulation cell. Geosystem Engineering. 14, 71-78.
  • KRISHNAN, K. A., SREEJALEKSHMI, K., VARGHESE, S., ANIRUDHAN, T., 2010. Removal of EDTA from aqueous solutions using activated carbon prepared from rubber wood sawdust: Kinetic and equilibrium modeling. Clean–Soil, Air, Water. 38, 361-369.
  • LEMLICH, R., 2012. Adsorptive bubble separation techniques, Elsevier.
  • LIMA, N. P., DE SOUZA PINTO, T. C., TAVARES, A. C., SWEET, J., 2016. The entrainment effect on the performance of iron ore reverse flotation. Miner. Eng. 96, 53-58.
  • MICHEAU, C., DIAT, O., BAUDUIN, P., 2018. Ion foam flotation of neodymium: From speciation to extraction. J. Mol. Liq. 253, 217-227.
  • MOYO, P., GOMEZ, C., FINCH, J., 2007. Characterizing frothers using water carrying rate. Can. Metall. Q. 46, 215-220.
  • NEETHLING, S., CILLIERS, J., 2009. The entrainment factor in froth flotation: Model for particle size and other operating parameter effects. Int. J. Miner. Process. 93, 141-148.
  • NIRAULA, T. P., BHATTARAI, A., CHATTERJEE, S. K., BIRATNAGAR, N., 2014. Sodium dodecylsulphate: A very useful Surfactant for Scientific Investigations. Journal of Knowledge and Innovation. 2, 111-113.
  • PENG, W., CHANG, L., LI, P., HAN, G., HUANG, Y., CAO, Y., 2019. An overview on the surfactants used in ion flotation. J. Mol. Liq. 110955.
  • POLAT, H., ERDOGAN, D., 2007. Heavy metal removal from waste waters by ion flotation. J. Hazard. Mater. 148, 267-273.
  • SAFARI, M., HARRIS, M., DEGLON, D., 2017. The effect of energy input on the flotation of a platinum ore in a pilot-scale oscillating grid flotation cell. Miner. Eng. 110, 69-74.
  • SAFARI, M., HARRIS, M., DEGLON, D., LEAL FILHO, L., TESTA, F., 2016. The effect of energy input on flotation kinetics. Int. J. Miner. Process. 156, 108-115.
  • SAFARI, M., HOSEINIAN, F. S., DEGLON, D., LEAL FILHO, L., PINTO, T. S., 2020. Investigation of the reverse flotation of iron ore in three different flotation cells: Mechanical, oscillating grid and pneumatic. Miner. Eng. 150, 106283.
  • SAFARI, M., HOSEINIAN, F. S., DEGLON, D. A., LEAL FILHO, L. D. S., PINTO, T. C. D. S., 2018. Investigation of the reverse flotation of hematite in three different types of laboratory flotation cells. Abstract book: IMPC 2018-Innovative technologies are key to successful mineral processing.
  • SEBBA, F. 1962. Ion flotation, Elsevier.
  • SHAHANE, G., KUMAR, A., ARORA, M., PANT, R., LAL, K., 2010. Synthesis and characterization of Ni–Zn ferrite nanoparticles. J. Magn. Magn. Mater. 322, 1015-1019.
  • SHAKIR, K., ELKAFRAWY, A. F., GHONEIMY, H. F., BEHEIR, S. G. E., REFAAT, M., 2010. Removal of rhodamine B (a basic dye) and thoron (an acidic dye) from dilute aqueous solutions and wastewater simulants by ion flotation. Water Res. 44, 1449-1461.
  • SILVERSTEIN, R. M., BASSLER, G. C., 1962. Spectrometric identification of organic compounds. J. Chem. Educ. 39, 546.
  • ŚWIĄTEK-KOZŁOWSKA, J., GUMIENNA-KONTECKA, E., DOBOSZ, A., GOLENYA, I. A., FRITSKY, I. O., 2002. Pyridine-2, 6-dihydroxamic acid, a powerful dihydroxamate ligand for Ni2+ and Cu2+ ions. J. Chem. Soc., Dalton Trans. 4639-4643.
  • TESTA, F. G., SAFARI, M., DEGLON, D., LEAL FILHO, L. D. S., 2017. Influence of agitation intensity on flotation rate of apatite particles. REM-International Engineering Journal. 70, 491-495.
  • WANG, H., YANG, W., YAN, X., WANG, L., WANG, Y., ZHANG, H., 2020. Regulation of Bubble Size in Flotation: A Review. J. Environ. Chem. Eng. 104070.
  • YANG, X. S., ALDRICH, C., 2006. Effects of impeller speed and aeration rate on flotation performance of sulphide ore. Transactions of Nonferrous Metals Society of China. 16, 185-190.
  • ZHENG, X., FRANZIDIS, J., JOHNSON, N., 2006. An evaluation of different models of water recovery in flotation. Miner. Eng. 19, 871-882.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc490bab-fef2-4bb9-a741-0927f0d1fdfb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.