Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, 25 wheels were cast with three different grain refiners: Al5Ti1B, Al3Nb1B and MTS 1582. Samples were machined from the wheels to check the mechanical properties. It was found that Nb grain refinement had the lowest grain size (260 mm) and highest tensile properties (yield strength of 119-124 MPa and ultimate tensile strength of 190-209 MPa). Al5Ti1B and MTS 1582 revealed quite similar results (110 MPa yield and 198 MPa ultimate tensile strength). The fading of the grain refining effect of Al5TiB1 master alloy was observed in both Nb and Ti added castings whereas during the investigated time interval, the fading was not observed when MTS 1582 was used.
Czasopismo
Rocznik
Tom
Strony
14--18
Opis fizyczny
Bibliogr. 20 poz.,il., tab., wykr.
Twórcy
autor
- Doktas Wheels, Turkey
autor
- Istanbul Technical University, Turkey
autor
- Istanbul Technical University, Turkey
autor
- Doktas Wheels, Turkey
autor
- Istanbul Technical University, Turkey
Bibliografia
- [1] Fan, Z., Wang, Y., Zhang, Y., Qin, T., Zhou, X., Thompson, G., Pennycook, T. & Hashimoto, T. (2015). Grain refining mechanism in the Al/Al-Ti-B system. Acta Materialia. 84, 292-304. https://doi.org/10.1016/j.actamat.2014.10.055.
- [2] Schumacher, P., Greer, A., Worth, J., Evans, P., Kearns, M., Fisher, P. & Green, A. (1998). New studies of nucleation mechanisms in aluminium alloys: implications for grain refinement practice. Materials Science and Technology. 14, 394-404. https://doi.org/10.1179/mst.1998.14.5.394.
- [3] Easton, M. & StJohn, D. (1999). Grain refinement of aluminum alloys: Part I. the nucleant and solute paradigms—a review of the literature. Metallurgical and Materials Transactions. A. 30, 1613-1623. https://doi.org/ 10.1007/s11661-999-0098-5
- [4] Easton, M. & StJohn, D. (1999). Grain refinement of aluminum alloys: Part II. Confirmation of, and a mechanism for, the solute paradigm. Metallurgical and Materials Transactions. A. 30, 1625-1633. https://doi.org/10.1007/ s11661-999-0099-4
- [5] Limmaneevichitr, C. & Eidhed, W. (2003). Fading mechanism of grain refinement of aluminum–silicon alloy with Al–Ti–B grain refiners. Materials Science and Engineering: A. 349(1-2), 197-206. https://doi.org/10.1016 /S0921-5093(02)00751-7
- [6] Gürsoy, O., Erzi, E., & Dışpınar, D. (2019). Ti grain refinement myth and cleanliness of A356 melt. Shape Casting. Springer. 125- 130. https://doi.org/10.1007/978-3-030-06034-3_12
- [7] Schaffer, P.L. & Dahle, A.K. (2005). Settling behaviour of different grain refiners in aluminium. Materials Science and Engineering: A. 413, 373-378. https://doi.org/10.1016/ j.msea.2005.08.202
- [8] Sigworth, G.K. & Kuhn, T.A. (2007). Grain refinement of aluminum casting alloys. International Journal of Metalcasting. 1. 31-40. DOI:10.1007/BF03355416.
- [9] Greer, A.L., Cooper, P.S., Meredith, M.W., Schneider, W., Schumacher, P., Spittle, J.A. & Tronche, A. (2003). Grain refinement of aluminium alloys by inoculation. Advanced Engineering Materials. 5, 81-91. https://doi.org/10.1002/ adem.200390013
- [10] Li, Y., Hu, B., Liu, B., Nie, A., Gu, Q., Wang, J. & Li, Q. (2020). Insight into Si poisoning on grain refinement of Al-Si/Al-5Ti-B system. Acta Materialia. 187, 51-65. DOI: 10.1016/j.actamat.2020.01.039.
- [11] Li, Y. Gu, Q.-F., Luo, Q., Pang, Y., Chen, S.-L., Chou, K.-C., Wang, X.-L. & Li, Q. (2016). Thermodynamic investigation on phase formation in the Al-Si rich region of Al-Si-Ti system. Materials and Design. 102, 78-90. https://doi.org/10.1016/j.matdes.2016.03.144
- [12] Kori, S., Murty, B. & Chakraborty, M. (1999). Influence of silicon and magnesium on grain refinement in aluminium alloys. Materials Science and Technology. 15, 986-992. https://doi.org/10.1179/026708399101506823.
- [13] Ravi, K., Manivannan, S., Phanikumar, G., Murty, B. & Sundarraj, S. (2011). Influence of Mg on grain refinement of near eutectic Al-Si alloys. Metallurgical and Materials Transactions A. 42, 2028-2039. DOI: 10.1007/s11661-010-0600-0.
- [14] Timelli, G., Camicia, G. & Ferraro, S. (2014). Effect of grain refinement and cooling rate on the microstructure and mechanical properties of secondary Al-Si-Cu alloys. Journal of Materials Engineering and Performance. 23(2), 611-621. DOI:10.1007/s11665-013-0757-y
- [15] Nowak, M., Bolzoni, L. & Babu, N.H. (2015). Grain refinement of Al-Si alloys by Nb-B inoculation. Part I: Concept development and effect on binary alloys. Materials & Design. 1980-2015. 66, 366-375. https://doi.org/10.1016/ j.matdes.2014.08.066
- [16] Nowak, M., Yeoh, W., Bolzoni, L. & Babu, N.H. (2015). Development of Al-Nb-B master alloys using Nb and KBF4 powders. Materials & Design. 75, 40-46. https://doi.org/10.1016/j.matdes.2015.03.010.
- [17] Bolzoni, L., Nowak, M. & Babu, N.H. (2015). Grain refinement of Al-Si alloys by Nb-B inoculation. Part II: application to commercial alloys. Materials & Design. 1980-2015. 66, 376-383. https://doi.org/10.1016/j.matdes. 2014.08.067 .
- [18] Bolzoni, L., Nowak, M. & Babu, N.H. (2015). On the effect of Nb-based compounds on the microstructure of Al–12Si alloy. Materials Chemistry and Physics. 162, 340-345. https://doi.org/10.1016/j.matchemphys.2015.05.076.
- [19] Aydogan, F., Dizdar, K.C., Sahin, H., Mentese, E. & Dispinar, D. (2022). Weibull analysis evaluation of Ti, B, Nb and MTS grain refined Al11Si alloy. Materials Chemistry and Physics. 126264. https://doi.org/10.1016/j.matchemphys.2022.126264
- [20] Xu, J., Li, Y., Hu, B., Jiang, Y. & Li, Q. (2019). Development of Al-Nb-B master alloy with high Nb/B ratio for grain refinement of hypoeutectic Al-Si cast alloys. Journal of Materials Science. 54(23), 14561-14576. DOI:10.1007/s10853-019-03915-9.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc46f765-b7ea-40ef-8521-1e2270054f19