PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of preservative on the tensile strength of the tissue of porcine circulatory system

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There are many biomaterials that can substitute pathologically altered tissue, however, none of them is as perfect as a native tissue. Currently, scientists are looking for new biomaterials that can be successfully implanted without exposing the patient to reoperation. Each material introduced into an organism must afford sufficient mechanical and biochemical properties and meet the criteria of the biomaterial. Materials intended to take over the function of natural tissue materials should be characterized to the greatest extent by similar mechanical properties. The authors of many publications describing the results of strength tests of biological tissues show different ways of researching them. In many cases, the form of the test material preparation is different because of anisotropy of biological tissue. This study provides an overview of selected methods for the tensile tests characterizing the mechanical properties of the heart valves, pericardium and porcine aortas. We also present results of our study of mechanical properties of the natural porcine tissues.
Rocznik
Strony
67--75
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
  • Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Edwards M, Draper ER, Hand JW, Taylor KM, Young IR., Mechanical testing of human cardiac tissue strength and stiffness: implications for MRI safety. Journal of Cardiovascular Magnetic Resonance 7 (2005), 835-840.
  • 2. Kalejsa M, Stradinsa P, Lacisa R, Ozolantab I, Pavarsa J, Kasyanovb V., St Jude Epic heart valve bioprostheses versus native human and porcine aortic valves – comparison of mechanical properties. Interactive CardioVascular and Thoracic Surgery 8 (2009), 553-557.
  • 3. Stradins P, Lacisa R, Ozolantab I, Purinab B, Oseb V, Feldmanea L, Kasyanovb V., Comparison of biomechanical and structural properties between human aortic and pulmonary valve. European Journal of Cardio-thoracic Surgery 26 (2004), 634-639.
  • 4. Mohammad S.N., The Effect of storage on tensile properties of natural heart valve tissue. University of Surrey 1994.
  • 5. Sauren A.H, Van Hout M., Van Steenhoven A, Veldpaus F., Janssen J., The mechanical properties of porcine aortic valve tissues. J. Biomechanics 16, 5 (1983), 327-337.
  • 6. Bourges J.Y, Rojo F.J, García-Paez J.M, Atienza J.M, Álvarez L, Guinea G., Relationship between fibre orientation and tensile strength of natural collagen membranes for heart valve leaflets. Anales de Mecánica de la Fraktura 28, 1 (2011), 51-55.
  • 7. http://www.alveo.4poziom.net/slowniczek,b,BLONA%20SUROWICZA.html, access date: 5.01.2014
  • 8. Lavrijsen T., Validation of indentation tests on porcine Pericardium against uniaxial tensile tests. BMTE 07.41, December 2007, Internship BME -master
  • 9. Garcia Páez JM, Jorge-Herrero E, Carrera A, Millán I, Rocha A, Salvador J, Mendez J, Téllez G, Castillo-Olivares J., Porcine pericardial membrane is subjected tensile testing: preliminary study of the Process of Selecting tissue for use in the construction of cardiac bioprostheses, Journal of Material Science: Materials in Medicine 12 (2001), 425 ± 430.
  • 10. Bochenek A., Reicher M., Anatomia człowieka T. III Układ naczyniowy. W. Łasiński [ed.], PZWL, Warszawa, 1968, 171-178, 184.
  • 11. Willkins WR, Vascular P., Dobrin mechanics. Handbook of Physiology. Part I. Peripheral Circulation and Organ Blood Flow. Shepard JT, Abbound FM [ed], Baltimore, 1983, 65-102.
  • 12. Groenink M., Langerak S., Vanbavel E., Van der Wall E., Mulder B., Van der Wal A., Spaan J., The influence of aging and aortic stiffness on permanent dilation and breaking stress of the thoracic descending aorta. Cardiovasc Research 43 (1999), 471-480.
  • 13. Roach M., Burton A.C., The reason for the shape of the dispensability carves of arteries. Canadian Journal of Biochemistry and Physiology 35 (1957), 681-690.
  • 14. Sonesson B, Lanne T, Vernesson E, Hansen F., Sex difference in the mechanical properties of the abdominal aorta in human beings. Journal of Vascular Surgery 29 (1994), 959-969.
  • 15. Mechanical properties of the aorta. Annual report to the European society for vascular surgery under the direction of pr ramon, Berguer Ambroise Duprey, http://www.esvs.org/sites/default/files/image/Travel%20grant%20reports/Duprey_Report.pdf, access date: 5.12.2013.
  • 16. Lanzo: Mechanical Characterization of the Aortic Vassel Wall, http://www-2.unipv.it/compmech/dissertations/lanzo.pdf, access date: 10.12.2013.
  • 17. Vorp D.A., Schiro B.J., Ehrlich M., Juvonen T., Ergin M., Griffith B., Effect of aneurysm on the tensile strength and biomechanical behavior of the ascending thoracic aorta. The Annals of Thoracic Surgery 75 (2003), 1210-1214.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc4408f9-0788-4d70-96f3-73b413ebe192
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.