PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of Photovoltaic Module Performance with L-Shaped Aluminum Fins Using Weather Data

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Photovoltaic (PV) power prediction is vital for efficient and effective solar energy utilization within the energy ecosystem. It enables grid stability, cost savings, and the seamless integration of solar power into the broader energy infrastructure. In this work, previously obtained data on the estimation of the power produced by a PV, which is cooled by L-shaped aluminum fins attached to the backside of the PV at different spacings, is used to predict the power produced by the PV. This is achieved by employing both neural network models and multiple linear regression (MLR) techniques to assess the correlation between power generated by PV with L-shaped aluminum fins and its input variables. Two distinct approaches were employed for this purpose. The first approach involved the conventional MLR model, while the second utilized a neural network, specifically the multilayer perceptron (MLP) model. The estimated outcomes were subsequently compared against the previously measured data. The MLP model showed a great ability to identify the relationship between input and output variables, it was noted. The statistical error study provided evidence of data mining’s acceptable accuracy when using the MLP model. Conversely, the results indicated that the MLR technique exhibited the least ability to estimate the power generated by PV with L-shaped aluminum fins.
Rocznik
Strony
336--344
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Applied Science Private University, Renewable Energy Technology Department, Amman 11937, Jordan
  • Al-Zaytoonah University of Jordan, Department of Alternative Energy Technology, Amman 11733, Jordan
autor
  • Amman Arab University, Department of Renewable Energy Engineering, Amman 11953, Jordan
autor
  • Department of Renewable Energies and Decentralized Energy Supplying, Faculty of Environmental Engineering and Applied Informatics, University of Applied Sciences and Arts, Campusallee 12, 32657 Lemgo, Germany
Bibliografia
  • 1. Abdelhafez E., Fava S. 2022. Performance of a PV module using water based titanium oxide nano fluid coated fins. International Journal on Energy Conversion (IRECON), 10(2), 52-59.
  • 2. Akyol U., Akal D., Durak A. 2021. Estimation of power output and thermodynamic analysis of standard and finned photovoltaic panels. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(3), 8438–8457.
  • 3. Al Aboushi A., Abdelhafez E., Hamdan M. 2022. Finned PV natural cooling using water-based TiO2 nanofluid. Sustainability, 14(20), 12987.
  • 4. Alanazi M., Alanazi A., Khodaei A. 2016. Longterm solar generation forecasting. 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), Dallas, TX, USA.
  • 5. Alhmoud L., Al-Zoubi A. M., Aljarah I. 2022. Solar PV power forecasting at Yarmouk University using Machine Learning Techniques. Open Engineering, 12(1), 1078–1088.
  • 6. Ali M., Ali H., Moazzam W., Saeed M.B. 2015. Performance enhancement of PV cells through microchannel cooling. AIMS Energy, 3(4), 699–710.
  • 7. Alizadeh H., Ghasempour R., Shafii M.B., Ahmadi M.H., Yan W., Nazari M.A. .2018. Numerical simulation of PV cooling by using single turn pulsating heat pipe. International Journal of Heat and Mass Transfer, 127, 203–208.
  • 8. Al-Sallal H., Hamdan M. 2022. Bifacial photovoltaic (PV) systems performance enhancement using a selective surface reflector. International Journal on Energy Conversion (IRECON), 10(2), 37.
  • 9. Amrouche B., Le Pivert X. 2014. Artificial Neural Network based daily local forecasting for Global Solar Radiation. Applied Energy, 130, 333–341.
  • 10. Behura A.K., Gupta H. K. 2020. Efficient direct absorption solar collector using nanomaterial suspended heat transfer fluid. Materials Today: Proceedings, 22, 1664–1668.
  • 11. Behura A.K., Prasad B.N., Prasad L. 2016. Heat transfer, friction factor and thermal performance of three sides artificially roughened Solar Air Heaters. Solar Energy, 130, 46–59.
  • 12. Benghanem M., Al-Mashraqi A.A., Daffallah K.O. 2016. Performance of solar cells using thermoelectric module in hot sites. Renewable Energy, 89, 51–59.
  • 13. Chung M.H. 2020. Estimating solar insolation and power generation of photovoltaic systems using previous day weather data. Advances in Civil Engineering, 2020, 1–13.
  • 14. Fan C., Xiao F., Wang S. 2014. Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques. Applied Energy, 127, 1–10.
  • 15. Farhan A.A., Hasan D.J. 2020. An experimental investigation to augment the efficiency of photovoltaic panels by using longitudinal fins. Heat Transfer, 50(2), 1748–1757.
  • 16. Firoozzadeh M., Shiravi A.H., Chandel S.S. 2022a. An experimental analysis of enhancing efficiency of photovoltaic modules using straight and Zigzag Fins. Journal of Thermal Analysis and Calorimetry, 147(16), 8827–8839.
  • 17. Grubišić-Čabo F., Nižetić S., Čoko D., Marinić Kragić I., Papadopoulos A. 2018. Experimental investigation of the passive cooled free-standing photovoltaic panel with fixed aluminum fins on the backside surface. Journal of Cleaner Production, 176, 119–129.
  • 18. Hamdan M., Abdelhafez E. 2021. The impact of optical liquid filters on PV panel performance. Environmental Science and Pollution Research, 29(16), 23988–23993.
  • 19. Hamdan M., Abdelhafez E., Al Aboushi A., Othman A., Al-Saleh S., Ajib S. 2023. Enhancing PV modules performance using L-shaped aluminum fins. International Review of Mechanical Engineering (IREME), 17(2), 48-56.
  • 20. Hamdan M., Brawiesh A.K. 2019. Enhancement of PV performance using optical solar spectrum splitting. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 43(16), 2000–2007.
  • 21. Hamdan M., Shehadeh M., Al Aboushi A., Hamdan A., Abdelhafez, E. 2018. Photovoltaic cooling using phase change material. Jordan Journal of Mechanical and Industrial Engineering, 12(3), 167-170.
  • 22. Khan S., Waqas A., Ahmad N., Mahmood M., Shahzad N., Sajid M. B. 2020. Thermal management of solar PV module by using hollow rectangular aluminum fins. Journal of Renewable and Sustainable Energy, 12(6).
  • 23. Kianifard S., Zamen M., Nejad A.A. 2020. Modeling, designing and fabrication of a novel PV/T cooling system using half pipe. Journal of Cleaner Production, 253, 119972.
  • 24. Long H., Zhang Z., Su Y. 2014. Analysis of daily solar power prediction with data-driven approaches. Applied Energy, 126, 29–37.
  • 25. Manasrah A., Alkhalil S., Masoud M. 2020. Investigation of multi-way forced convective cooling on the backside of solar panels. International Journal on Energy Conversion (IRECON), 8(5), 181.
  • 26. Nada S., El-Nagar D. 2018. Possibility of using PCMs in temperature control and performance enhancements of free stand and building integrated PV modules. Renewable Energy, 127, 630–641.
  • 27. Najafi H., Woodbury K. 2013. Optimization of a cooling system based on peltier effect for photovoltaic cells. Solar Energy, 91, 152–160.
  • 28. Nomiyama F., Asai J., Murakami T., Murata J. 2011. A study on global solar radiation forecasting using weather forecast data. IEEE 54th International Midwest Symposium on Circuits and Systems.
  • 29. Prasad B.N. Behura A.K., Prasad L. 2014. Fluid flow and heat transfer analysis for heat transfer enhancement in three sided artificially roughened Solar Air Heater. Solar Energy, 105, 27–35.
  • 30. Rahimi M., Karimi E., Asadi M., Valeh-e-Sheyda P 2013. Heat transfer augmentation in a hybrid microchannel solar cell. International Communications in Heat and Mass Transfer, 43, 131–137.
  • 31. Rajvikram M., Leoponraj S., Ramkumar S.P., Akshaya H., Dheeraj A. 2019. Experimental investigation on the abasement of operating temperature in solar photovoltaic panel using PCM and aluminium. Solar Energy, 188, 327–338.
  • 32. Sedaghat A., Karami M.R. Eslami M. 2019. Improving performance of a photovoltaic panel by Pin Fins: A theoretical analysis. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 44(4), 997–1004.
  • 33. Selimefendigil F., Bayrak F., Oztop H.F. 2018. Experimental Analysis and dynamic modeling of a photovoltaic module with porous fins. Renewable Energy, 125, 193–205.
  • 34. Sharma A., Tyagi V., Chen C., Buddhi D. 2009. Review on thermal energy storage with phase change materials and applications. Renewable & Sustainable Energy Reviews, 13(2), 318–345. https://doi.org/10.1016/j.rser.2007.10.005
  • 35. Shastry D.M.C., Arunachala U.C. 2020. Thermal management of photovoltaic module with Metal Matrix Embedded PCM. Journal of Energy Storage, 28, 101312.
  • 36. Shi J., Lee W.-J., Liu Y., Yang Y., Wang P. 2012. Forecasting power output of photovoltaic systems based on weather classification and support Vector Machines. IEEE Transactions on Industry Applications, 48(3), 1064–1069.
  • 37. Shiravi A.H., Firoozzadeh M. 2022. Performance assessment of a finned photovoltaic module exposed to an air stream: An experimental study. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(11).
  • 38. Stropnik R., Stritih U. 2016. Increasing the efficiency of PV panel with the use of PCM. Renewable Energy, 97, 671–679.
  • 39. Valeh-e-Sheyda P., Rahimi M., Karimi E., Asadi M. 2013. Application of two-phase flow for cooling of hybrid microchannel PV cells: A comparative study. Energy Conversion and Management, 69, 122–130.
  • 40. Verma S. Mohapatra S., Chowdhury S., Dwivedi G. 2021. Cooling techniques of the PV module: A Review. Materials Today: Proceedings, 38, 253–258.
  • 41. Wang R., Wang J., Yuan W. 2019. Analysis and optimization of a microchannel heat sink with V-ribs using nanofluids for micro solar cells. Micromachines, 10(9), 620.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc4349a3-c740-4078-8e52-8eb370652ab9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.