Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Additive manufacturing (AM), particularly the Fused Deposition Modeling (FDM) has become a cornerstone manufacturing technology in the nascent field of 3D printing. The mechanical properties and effective use of material in 3D printed parts are essential for enhancing the potential of AM in industrial and functional applications. This paper explores how core FDM printing process parameters: print temperature, extrusion width, and printing speed affect the compressive strength-to-weight ratio of Polyethylene Terephthalate Glycol PETG parts produced via FDM. Based on the Box-Behnken design of Response Surface Methodology (RSM) the influence of these conditions concerning the mechanics and material properties were studied. The results show that a printing temperature of 250 °C provides improved compressive strength as well as decreased weight through strong bonding between layers. Small, extruded widths (0.5 mm) have been found to offer the ideal strength-to-weight ratio while large extruded widths (0.6 mm) greatly enhanced strength by adding weight. A slower printing speed of 30mm/s promoted greater compressive strength but yielded more dense parts. In the multi-objective desirability optimization, optimal parameters were found in which the printing temperature was 250°C, the extruded width was 0.5879mm and the printing speed was 30mm/s. The results of this study are beneficial for realizing lightweight yet mechanically abundant 3D printing parts while enhancing the field of AM in different industries.
Wydawca
Rocznik
Tom
Strony
301--315
Opis fizyczny
Bibliogr. 27 poz., fig., tab.
Twórcy
autor
- Production Engineering and Metallurgy Department, University of Technology, Iraq, Alsina’a Street, 10066 Baghdad, Iraq
autor
- Production Engineering and Metallurgy Department, University of Technology, Iraq, Alsina’a Street, 10066 Baghdad, Iraq
autor
- Production Engineering and Metallurgy Department, University of Technology, Iraq, Alsina’a Street, 10066 Baghdad, Iraq
autor
- Production Engineering and Metallurgy Department, University of Technology, Iraq, Alsina’a Street, 10066 Baghdad, Iraq
Bibliografia
- 1. Hsueh MH, Lai CJ, Wang SH, Zeng YS, Hsieh CH, Pan CY, Huang WC. Effect of printing parameters on the thermal and mechanical properties of 3D-printed PLA and PETG, using fused deposition modeling. Polymers. 2021 May 27; 13(11): 1758.
- 2. Mohammed AR, Jawad WK. Experimental and theoretical investigations of octagonal shapes using multi-stage deep drawing process. In AIP Conference Proceedings 2023 Dec 22; 2977(1). AIP Publishing.
- 3. Obaeed NH and Hamdan WK. Cranioplasty materials for human skull rehabilitation. In Advancements in Sustainability Systems, R. A. Hussain, H. Al-Kayiem, Hasanain A. Abdul Wahhab, and Jessam, Ed., New York: Nova Science Publishers, 2024; 123–140.
- 4. Chunhua S, Guangqing S. Application and development of 3D printing in medical field. Modern Mechanical Engineering. 2020 Aug 10; 10(3): 25–33.
- 5. Godina R, Ribeiro I, Matos F, T. Ferreira B, Carvalho H, Peças P. Impact assessment of additive manufacturing on sustainable business models in Industry 4.0 context. Sustainability. 2020 Aug 30; 12(17): 7066.
- 6. Mansor KK, Shabeeb AH, Hussein EA, Abbas TF, Bedan AS. A Statistical Investigation and Prediction of the Effect of FDM Variables on Flexural Stress of PLA Prints. Tikrit Journal of Engineering Sciences. 2024 Jul 2; 31(3): 10–7.
- 7. Obaeed NH, Hamdan WK. Reconstruction and evaluation of 3D Printing PMMA cranioplasty implants. International Journal on Interactive Design and Manufacturing (IJIDeM). 2024 Aug; 18(6): 4233–45.
- 8. Abdullah MA, Abbas TF. Numerical developing the Internet of Things to remotely monitor the performance of a three dimensions printer for free-form surface. Journal of Engineering Science and Technology. 2023 Dec; 18(6): 2809–22.
- 9. Ning F, Cong W, Qiu J, Wei J, Wang S. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Composites Part B: Engineering. 2015 Oct 1; 80: 369–78.
- 10. Farajian M. Additive manufacturing processes and performance. Welding in the World. 2023 Apr; 67(4): 831–2.
- 11. Dauod DS, Mohammed MS, Aziz IA, Abbas AS. Mechanical vibration influence in microstructural alterations and mechanical properties of 304 stainless steel weld joints. Journal of Engineering Science and Technology. 2023 July (18): 33–54.
- 12. Singh G, Mehta A, Vasudev H. Sustainability of additive manufacturing: a comprehensive review. Progress in Additive Manufacturing. 2024 Mar 21; 1–24.
- 13. Shiaa WQ, Abdulghafour AB, Hassoon OH. An enhanced technique for removing soft tissues and highlighting regions of interest in medical images. In AIP Conference Proceedings 2024 Jun 10; 3002(1). AIP Publishing.
- 14. Valvez S, Silva AP, Reis PN. Compressive behaviour of 3D-printed PETG composites. Aerospace. 2022 Feb 28; 9(3): 124.
- 15. Gibson I, Rosen DW, Stucker B, Khorasani M, Rosen D, Stucker B, Khorasani M. Additive manufacturing technologies. Cham, Switzerland: Springer; 2021.
- 16. Hassan MH, Omar AM, Daskalakis E, Hou Y, Huang B, Strashnov I, Grieve BD, Bártolo P. The potential of polyethylene terephthalate glycol as biomaterial for bone tissue engineering. Polymers. 2020 Dec 18; 12(12): 3045.
- 17. Petersmann S, Spoerk M, Van De Steene W, Üçal M, Wiener J, Pinter G, Arbeiter F. Mechanical properties of polymeric implant materials produced by extrusion-based additive manufacturing. Journal of the Mechanical Behavior of Biomedical Materials. 2020 Apr 1; 104: 103611.
- 18. Özen A, Auhl D, Völlmecke C, Kiendl J, Abali BE. Optimization of manufacturing parameters and tensile specimen geometry for fused deposition modeling (FDM) 3D-printed PETG. Materials. 2021 May 14; 14(10): 2556.
- 19. Mahesh V, Joseph AS, Mahesh V, Harursampath D, Vn C. Investigation on the mechanical properties of additively manufactured PETG composites reinforced with OMMT nanoclay and carbon fibers. Polymer Composites. 2021 May; 42(5): 2380–95.
- 20. Valvez S, Silva AP, Reis PN. Compressive behaviour of 3D-printed PETG composites. Aerospace. 2022 Feb 28; 9(3): 124.
- 21. Mohammed RN, Ganesh BK, Saminathan R. Flexural Modulus Enhancement and Minimization of Printing Time and Part Weight for PET-G, Using Taguchi-GRA-TOPSIS Techniques \[J]. Materiale Plastice. 2022; 3.
- 22. Vijayasankar K.N., Falguni P. Effect of process parameters on the quality of Additively Manufactured PETG-Silk Composite. Applied Composite Materials. 2023 Feb; 30(1): 135–55.
- 23. Vijayakumar MD, Palaniyappan S, Veeman D, Tamilselvan M. Process optimization of hexagonally structured polyethylene terephthalate glycol and carbon fiber composite with added shell walls. Journal of Materials Engineering and Performance. 2023 Jul; 32(14): 6434–47.
- 24. Petousis M, Ntintakis I, David C, Sagris D, Nasikas NK, Korlos A, Moutsopoulou A, Vidakis N. A coherent assessment of the compressive strain rate response of PC, PETG, PMMA, and TPU thermoplastics in MEX additive manufacturing. Polymers. 2023; 15(19).
- 25. Patil S, Sathish T, Giri J, Felemban BF. An experimental study of the impact of various infill parameters on the compressive strength of 3D printed PETG/CF. AIP Advances. 2024 Sep 1; 14(9).
- 26. Khudhir WS, Ahmed BA, Shukur JJ. Experimental investigation and optimization of surface roughness and kerf width in wire-EDM process. In AIP Conference Proceedings 2024 Jun 10; 3002(1). AIP Publishing.
- 27. Abdulridha HH, Abbas TF, Bedan AS. Predicting mechanical strength and optimized parameters in FDM-printed polylactic acid parts via artificial neural networks and desirability analysis. Management Systems in Production Engineering. 2024 Aug 1; 32(3).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc42ed61-2680-4b52-b598-70578369a71d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.