PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The application of the fuzzy rule-based Bayesian algorithm to determine which residential appliances can be considered for the demand response program

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes the usage of the fuzzy rule-based Bayesian algorithm to determine which residential appliances can be considered for the Demand Response program. In contrast with other related studies, this research recognizes both randomness and fuzziness in appliance usage. Moreover, the input data for usage prediction consists of nodal price values (which represent the actual power system conditions), appliance operation time, and time of day. The case study of residential power consumer behavior modeling was implemented to show the functionality of the proposed methodology. The results of applying the suggested algorithm are presented as colored 3D control surfaces. In addition, the performance of the model was verified using R squared coefficient and root mean square error. The conducted studies show that the proposed approach can be used to predict when the selected appliances can be used under specific circumstances. Research of this type may be useful for evaluation of the demand response programs and support residential load forecasting.
Rocznik
Strony
art. no. e146106
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Electrical Engineering, Electrical Power Engineering Institute, Koszykowa 75, 00-662 Warsaw, Poland
Bibliografia
  • [1] G. Benysek, M. Jarnut, Sz. Wermiński, and J. Bojarski, “Distributed active demand response system for peak power reduction through load shifting,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 64, no. 4, pp. 925–936, 2016, doi: 10.1515/bpasts-2016-0101.
  • [2] G. Morales-Espana, R. Martinez-Gordon, and J. Sijm, “Classifying and modelling demand response in power systems,” Energy, vol. 242, no. 4, p. 2544, 2022, doi: 10.1016/j.energy.2021.122544.
  • [3] W. Li, R. Han, J. Zhang, C. Sun, and P. Fu, “An Incentive Strategy of Shiftable Load Participation in Demand Response Based on User Electricity Preferences,” Front. Energy Res., vol. 9, 2022, doi: 10.3389/fenrg.2021.678828.
  • [4] Z. Zhang, Z. Chen, and W. Lee, “Soft Actor-Critic Algorithm Featured Residential Demand Response Strategic Bidding for Load Aggregators,” IEEE Trans. Ind. Appl., vol. 64, no. 4, pp. 925–936, 2022, doi: 10.1109/TIA.2022.3172068.
  • [5] D. Sloot, N. Lehmann, and A. Ardone, “Explaining and promoting participation in demand response programs: The role of rational and moral motivations among German energy consumers,” Energy Res. Soc. Sci., vol. 84, p. 102431, 2022, doi: 10.1016/j.erss.2021.102431.
  • [6] H. Oh and H.Y. Chu, “Demand response in the retail electricity market,” Energy Effic., vol. 14, p. 53, 2021, doi: 10.1007/s12053-021-09970-z.
  • [7] F. Mancini, J. Cimaglia, G. Lo Basso, and S. Romano, “Implementation and Simulation of Real Load Shifting Scenarios Based on a Flexibility Price Market Strategy – The Italian Residential Sector as a Case Study,” Energies, vol. 14, p. 3080, doi: 10.3390/en14113080.
  • [8] P.H. Li, I. Keppo, M. Xenitidou, and M. Kamargianni, “Investigation UK consumers’ heterogenous engagement in demandside response,” Energy Effic., vol. 13, pp. 621–648, 2020, doi: 10.1007/s12053-020-09847-7.
  • [9] B. Wang, Q. Cai, and Z. Sun, “Determinants of Willingness to Participate in Urban Incentive-Based Energy Demand-Side-Response: An Empirical Micro-Data Analysis,” Sustainability, vol. 12, p. 8052, 2020, doi: 10.3390/su12198052.
  • [10] M. Fowlie, C. Wolfram, P. Baylis, A. Suprlock, A. Todd-Blick, and P. Cappers, “Default Effects And Follow-On Behaviour: Evidence From An Electricity Pricing Program,” Rev. Econ. Stud., vol. 88, no. 6, pp. 2886–2934, 2021, doi: 10.1093/restud/rdab018.
  • [11] J. Gao, Y. Yang, F. Gao, G. Guo, and Y. Lang, “The Impact of Customer’s Demand Response Behaviors on Power System With Renewable Energy Sources,” IEEE Trans. Sustain. Energy, vol. 11, no. 4, pp. 2851–2592, 2020, doi: 10.1109/TSTE.2020.2966906.
  • [12] N. Iliopoulos. M. Esteban, and S. Kudo, “Assessing the willingness of residential electricity consumers to adopt demand side management and distributed energy resources: A case study on the Japanese market,” Energy Policy, vol. 137, p. 111169, 2020, doi: 10.1016/j.enpol.2019.111169.
  • [13] Y. Jin et al., “Appliance use behavior modelling and evaluation in residential buildings: A case study of television energy use,” Build. Simul., vol. 13, pp. 787–801, 2020, doi: 10.1007/s12273-020-0648-8.
  • [14] O. Wonuola Olawale, B. Gilbert, and J. Reyna, “Residential Demand Flexibility: Modeling Occupant Behavior using Sociodemographic Predictors,” Energy Build., vol. 262, p. 111973, 2022, doi: 10.1016/j.enbuild.2022.111973.
  • [15] K. Gamma, R. Mai, C. Cometta, and M. Loock, “Engaging customers in demand response programs: The role of reward and punishment in customer adoption in Switzerland,” Energy Res. Soc. Sci., vol. 74, p. 101927, 2021, doi: 10.1016/j.erss.2021.101927.
  • [16] I. Antonopoulos, V. Robu, B. Couraud, and D. Flynn, “Data-driven modelling of energy demand response behaviour based on a large-scale residential trial,” Energy AI, vol. 4, p. 100071, 2021, doi: 10.1016/j.egyai.2021.100071.
  • [17] S.V. Oprea, A. Bara, B.G. Tudorica, M.I. Calinoiu, and M.A. Botezatu, “Insights into demand-side management with big data analytics in electricity consumer’s behaviour,” Comput. Electr. Eng., vol. 89, p. 106902, 2021, doi: 10.1016/j.compeleceng.2020.106902.
  • [18] T.K. Avordeh, S. Gyamfi, and A.A. Opoku, “The role of demand response in residential electricity load reduction using appliance shifting techniques,” Int. J. Energy Sect. Manag., vol. 16, no. 4, pp. 605–635, 2022, doi: 10.1108/IJESM-05-2020-0014.
  • [19] S.S. Reka, P. Venugopal, H.H. Alhelou, P. Siano, and M.E.H. Golshan, “Real Time Demand Response Modeling for Residential Consumers in Smart Grid Considering Renewable Energy With Depp Learning Approach,” IEEE Access., vol. 9, pp. 56551–56562, 2021, doi: 10.1109/ACCESS.2021.3071993.
  • [20] Y. Wang, Y. Fu, H. Lin, Q. Sun, J.L. Scartezzini, and R. Wennersten, “Uncertainty modeling of household appliance loads for smart energy management,” Energy Rep., vol. 8, no. 1, pp. 232–237, 2021, doi: 10.1016/j.egyr.2021.11.097.
  • [21] H. Apaydin-Ozkan, “An Appliance Scheduling System for Residential Energy Management,” Sensors, vol. 21, p. 3287, 2021, doi: 10.3390/s21093287.
  • [22] Y. Zhang, Y. Hu, and H. Fang, “Consumer satisfaction=oriented residential appliance scheduling algorithms,” Syst. Sci. Control., vol. 9, no. 1, pp. 663–672, 2021, doi: 10.1080/21642583.2021.1978899.
  • [23] M.A. Judge, A. Manzoor, C. Maple, J.J.P.C. Rodrigues, and S. Islam, “Price-based demand response for household load management with interval uncertainty,” Energy Rep., vol. 7, pp. 8493–8504, 2021, doi: 10.1016/j.egyr.2021.02.064.
  • [24] Z. Pei, Y. Ma, M. Wu, and J. Yang, “Study on Load-Participated Demand Response Model Based on Load Aggregator,” Front. Energy Res., vol. 9, no. 4, 2021, doi: 10.3389/fenrg.2021.797979.
  • [25] L. Wang, Ch. Hou, B. Ye, X. Wang, Ch. Yin, and H. Cong, “Optimal Operation Analysis of Integrated Community Energy System Considering the Uncertainty of Demand Response,” IEEE Trans. Power Syst., vol. 36, no. 4, pp. 3681–3691, 2021, doi: 10.1109/TPWRS.2021.3051720.
  • [26] L. Lu, F. Goerlandt, O.A. Banda, and P. Kujala, “Developing fuzzy logic strength of evidence index and application in Bayesian networks for system risk management,” Expert Syst. Appl., vol. 192, p. 116374, 2022, doi: 10.1016/j.eswa.2021.116374.
  • [27] J.M. Kościelny, M. Bartyś, and A. Sztyber, “Diagnosing with a hybrid fuzzy-Bayesian inference approach,” Eng. Appl. Artif. Intell., vol. 104, p. 104345, 2021, doi: 10.1016/j.engappai.2021.104345.
  • [28] A. Lakehal, “Bayesian graphical model based optimal decision-making for fault diagnosis of critical induction motors in industrial applications,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 3, pp. 467–476, 2020, doi: 10.24425/bpasts.2020.133374.
  • [29] K.P. Shirsat and G.P. Bhole, “Fuzzy Bayesian context-aware system to reduce electricity consumption,” Int. J. Inf. Tecnol., vol. 13, no. 2, pp. 447–452, 2021, doi: 10.1007/s41870-020-00570-1.
  • [30] X. Liu, D. Tang, and Z. Dai, “A Bayesian Game Approach for Demand Response Management Considering Incomplete Information,” J. Mod. Power Syst., vol. 10, no. 2, pp. 492–501, 2022, doi: 10.35833/MPCE.2020.000288.
  • [31] A. Sumaiti, S.R. Konda, L. Panwar, V. Gupta, R. Kumar, and B.K. Panigrahi, “Aggregated Demand Response Scheduling in Competitive Market Considering Load Behavior Through Fuzzy Intelligence,” IEEE Trans. Ind. Appl., vol. 56, no. 4, pp. 4236–4247, 2020, doi: 10.1109/TIA.2020.2988853.
  • [32] N. Pflugradt, J. Teuscher, B. Platzer, and W. Schufft, “Analysing low-voltage grids using a behaviour based load profile generator,” in Proc. Int. Conf. on Renewable Energies and Power Quality. (ICREPQ), 2013, doi: 10.24084/repqj11.308.
  • [33] P. Kapler, “Utilization of the adaptive potential of individual power consumers in interaction with power system,” Ph.D. thesis, Warsaw University of Technology, Faculty of Electrical Engineering, Poland, 2018 [in Polish].
  • [34] S.N. Sivanandam, S. Sumathi, and S.N. Deepa, Introduction to Fuzzy Logic using MATLAB. Berlin: Springer-Verlag, 2007.
  • [35] C. Theodoropoulos, N. Skoulikidis, and A. Stamou, “Habfuzz: A tool to calculate the instream hydraulic habitat suitability using fuzzy logic and fuzzy Bayesian inference,” J. Open Source Softw., vol. 1, no. 6, p. 82, 2016, doi: 10.21105/joss.00082.
  • [36] T.J. Ross, Fuzzy Logic with Engineering Applications, 3rd Edition. West Sussex: John Wiley & Sons Ltd, 2010.
  • [37] I. Pan and D. Bester, “Fuzzy Bayesian Learning,” IEEE Trans. Fuzzy Syst., vol. 26, no. 3, pp. 1719–1731, 2018, doi: 10.1109/TFUZZ.2017.2746064.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc3fcf62-c91a-4caf-b4a2-beb338e7a59d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.