PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Minimum energy control of degenerate Cauchy problem with skew-Hermitian pencil

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present research paper deals with the effectiveness of the control of an infinite-dimensional degenerate Cauchy problem with variable operator coefficients, skew-Hermitian pencil and bounded input condition. This study explores the minimum energy control problem. The investigation follows a set of methods to examine the procedure for developing a new result to solve the problem. Indeed, by the use of decomposition transformation of the considered system and the application of the Gramian operator, the formula of the process for controlling the system with minimum energy is obtained. Afterwards, a procedure to compute the optimal input for minimizing the performance index is then proposed. In a nutshell, the obtained results indicate that optimal control for minimizing the performance index ensures the solution of the minimum energy control of an infinite-dimensional degenerate Cauchy problem.
Wydawca
Rocznik
Strony
251--261
Opis fizyczny
Bibliogr. 29 poz..
Twórcy
  • Mathematics and Computer Science Devision, ACSY Team of Pure and Applied Mathematics Research Lab, Abdelhamid Ibn Badis University-Mostaganem, P.O.Box 227/118, 27000 Mostaganem, Algeria
  • Mathematics and Computer Science Devision, ACSY Team of Pure and Applied Mathematics Research Lab, Abdelhamid Ibn Badis University-Mostaganem, P.O.Box 227/118, 27000 Mostaganem, Algeria
Bibliografia
  • [1] A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems, Systems & Control: Found. Appl., Birkhäuser, Boston, 2007.
  • [2] H. Brezis, Analyse Fonctionnelle: Théorie et Applications, Dunod, Paris, 2005.
  • [3] S. L. Campbell, C. D. Meyer and N. J. Rose, Applications of the Drazin Inverse to Linear Systems of Differential Equations with Singular Coefficients, SIAM J. Appl. Math. 31 (1976), no. 3, 411-425.
  • [4] R. W. Carroll and R. E. Showalter, Singular and Degenerate Cauchy Problems, Math. Sci. Eng. 127, Academic Press, New York, 1976.
  • [5] R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems Theory, Lect. Notes Control Inf. Sci. 8, Springer, Berlin, 1978.
  • [6] R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Texts Appl. Math. 21, Springer, New York, 1995.
  • [7] L. Dai, Singular Control Systems, Lect. Notes Control Inf. Sci. 118, Springer, Berlin, 1989.
  • [8] T. Kaczorek, Positive 1D and 2D Systems, Comm. Control Engrg. Ser., Springer, London, 2002.
  • [9] T. Kaczorek, Minimum energy control of positive continuous-time linear systems with bounded inputs, Int. J. Appl. Math. Comput. Sci. 23 (2013), no. 4, 725-730.
  • [10] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), no. 4, 508-520.
  • [11] J. Keller, On Solution of nonlineair wave equations, Comm. Pure Appl. Math. 10 (1957), no. 4, 523-530.
  • [12] J. Kisynski, Applications of semigroups to partial differential equations, Course on control theory and topics in functional analysis, Trieste, 1974.
  • [13] J. Klamka, Minimum energy control of discrete systems with delays in control, Internat. J. Control 26 (1977), no. 5, 737-744.
  • [14] J. Klamka, Minimum energy control of 2D systems in Hilbert spaces, Systems Sci. 9 (1983), no. 1-2, 33-42.
  • [15] J. Klamka, Controllability of Dynamical Systems, Math. Appl. 48, Springer, Netherlands, 1991.
  • [16] J. Klamka, Controllability of dynamical systems - a survey, Arch. Control Sci. 2 (1993), no. 3-4, 283-310.
  • [17] J. Klamka, Controllability and minimum energy control problem of fractional discrete-time systems, in: New Trends in Nanotechnology and Fractional Calculus Applications, Springer, New York (2010), 503-509.
  • [18] V. Komornik, Exact Controllability and Stabilization: The Multiplier Method, Res. Appl. Math., Masson, Paris, 1994.
  • [19] J. Lagnese, Singular differential equations in Hilbert space, SIAM J. Math. Anal. 4 (1973), 623-637.
  • [20] I. Lasiecka and R. Triggiani, Exact controllability of the wave equation with Neumann boundary control, Appl. Math. Optim. 19 (1989), no. 3, 243-290.
  • [21] J.-L. Lions, Équations différentielles opérationnelles et problèmes aux limites, Grundlehren Math. Wiss. 111, Springer, Berlin, 1961.
  • [22] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969.
  • [23] D. G. Luenberger, Dynamic equations in descriptor form, IEEE Trans. Automatic Control 22 (1977), no. 3, 312-321.
  • [24] M. G. Naso, Extension of the controllability concept from the finite dimension to the infinite-dimension: Exact, approximate, null controllability, Report, Université de Franche-Comté, Besançon, 2000.
  • [25] A. G. Rutkas, Scattering and transmission systems in electricl chains (finite and infinite) (in Russian), Ukrainian NIINTI 2457 UK-85D, Kharkov, Russian, 1985.
  • [26] A. G. Rutkas, Perturbation of skew-Hermitian pencils and a degenerate Cauchy problem, Ukrainian Math. J. 41 (1989), 931-935.
  • [27] B. P. Rynne and M. A. Youngson, Linear Functional Analysis, Springer, London, 2008.
  • [28] H. L. Vasudeva, Elements of Hilbert Spaces and Operator Theory, Springer, Singapore, 2017.
  • [29] J. Zabczyk, Mathematical Control Theory: An Introduction, Mod. Birkhäuser Class., Birkhäuser, Boston, 2008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc3f9968-6451-4b9d-9066-b9e328ec375d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.