Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Wpływ mieszaniny gazu z wodorem w stanie nieustalonego przepływu na odporność na pękanie stali L485ME
Języki publikacji
Abstrakty
In the present study, the L485ME low-alloy steel grade, widely used in the last few decades in the natural gas transmission pipelines, subjected to hydrogen was investigated with respect to material degradation. A fracture toughness parameter such as the calculated conditional stress intensity factor was compared to the threshold stress intensity factor for the plane strain hydrogen-assisted cracking derived from the experimental data. Based on macroscopic and microscopic evaluation and measurements, the hydrogen-assisted crack size propagation in steel specimens was compared to the subcritical crack growth. The hydrogen content in the tube wall for the base metal and heat-affected zone was estimated, whereas the pressure and temperature conditions in the pipeline were calculated from a non-isothermal transient gas flow model. The results were used to estimate the fracture toughness of the pipe wall material exposed to the hydrogen-blended natural gas.
W niniejszej pracy została przebadana, pod kątem degradacji materiału na skutek działania wodoru, stal niskostopowa gatunku L485ME, szeroko stosowana w ostatnich dziesięcioleciach do budowy rurociągów przesyłowych gazu ziemnego. Parametr odporności na kruche pękanie, taki jak obliczeniowy warunkowy współczynnik intensywności naprężeń, porównano z granicznym współczynnikiem intensywności naprężeń dla wydłużenia płaskiego, który wyznaczono z danych doświadczalnych dla pękania wywołanego wodorem. Na podstawie oceny oraz pomiarów makroskopowych i mikroskopowych, porównano wspomaganą wodorem propagację wielkości podkrytycznego wzrostu pęknięć w próbkach stalowych. Oszacowana została zawartość wodoru w ściance rury dla metalu podstawowego oraz strefy wpływu ciepła. W oparciu o nieizotermiczny model przepływu gazu w stanie nieustalonym, obliczono warunki ciśnienia i temperatury w rurociągu. Uzyskane wyniki wykorzystano do oszacowania odporności na pękanie materiału ścianki rury poddanego działaniu gazu ziemnego z dodatkiem wodoru.
Wydawca
Czasopismo
Rocznik
Tom
Strony
2--9
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Warsaw University of Technology, Gas Engineering Group, Nowowiejska 20, 00-653 Warsaw, Poland
autor
- Warsaw University of Technology, Gas Engineering Group, Nowowiejska 20, 00-653 Warsaw, Poland
Bibliografia
- [1] API Spec 5L, 46th edition, April 2018, Line pipe, Washington. Technical report.
- [2] EN-ISO 3183:2019. 2019. "Petroleum and natural gas industries - Steel pipe for pipeline transportation system". Technical report, Technical Comittee: ISO/TC 67/SC 2.
- [3] ASTM E1681-03. 2020. "Standard Test Method for Determining Threshold Stress Intensity Factor for Environment Assisted Cracking of Metallic Materials". ASTM International. Technical report.
- [4] ASME B31.12:2019. 2020. "Hydrogen piping and pipelines, ASME code for pressure piping". Technical report, The American Society of Mechanical Engineer.
- [5] ASME BPVC Section VIII, Division 3. 2021. "Alternative Rules for Construction of High Pressure Vessels, ASME Boiler and Pressure Vessel Code". Technical report, The American Society of Mechanical Engineer.
- [6] ASTM E399-22. 2022. "Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIC of Metallic Materials. " ASTM International. Technical report.
- [7] Bank Randolph E., Coughran Jr. William M., Wolfgang Fichtner, Eric Grosse, Donald J.Rose, and Kent Smith. 1985. "Transient simulation of silicon devices and circuits". IEEE Trans. Electron Devices, 32(10): 1992-2007.
- [8] Bhardwaj Utkarsh, Ângelo Manuel Palos Teixeira, and Carlos Guedes Soares. 2021. "Burst strength assessment of X100 to X120 ultra-high strength corroded pipes". Ocean Eng., 241: 110004.
- [9] Giovambattista Bilotta, Gilbert Henaff, Damien Halm, and Mandana Arzaghi. 2017. "Experimental measurement of out-of-plane displacement in crack propagation under gaseous hydrogen". Int. J. Hydrogen Energy, 42(15): 10568-10578.
- [10] Corinth Pipeworks S.A. 2022. "Hydrogen KIH qualification test report KIH testing of 40” x 22.2 mm /L485ME SAWH". non-published.
- [11] Drexler Andreas, Tom Depover, Silvia Leitner, Kim Verbeken, and Werner Ecker. 2020. "Microstructural based hydrogen diffusion and trapping models applied to Fe-CX alloys". J. Alloys Compd., 826: 154057.
- [12] Drexler Andreas, Florian Konert, Oded Sobol, Michael Rhode, Josef Domitner, Christof Sommitsch, and Thomas Böllinghaus. 2022. "Enhanced gaseous hydrogen solubility in ferritic and martensitic steels at low temperatures". Int. J. Hydrogen Energy, 47(93): 39639-39653.
- [13] Goutam Ghosh, Paul Rostron, Rajnish Garg, and Ashoutosh Panday. 2018. "Hydrogen induced cracking of pipeline and pressure vessel steels: A review". Eng. Fract. Mech., 199: 609-618.
- [14] Xiaofei Guo, Tianyi Li, Zhendong Sheng, Martin Christ, Rahul Sharma, Marcus Söker, Uwe Reisgen, and Wolfgang Bleck. 2022. "Impact of welding simulated heat treatment on hydrogen embrittlement behavior of high-strength fine-grained steels". Eng. Fail. Anal., 140: 106602.
- [15] Hagen Anette Brocks and Antonio Alvaro. 2020. "Hydrogen Influence on Mechanical Properties in Pipeline Steel - state of the art". SINTEF Rapp.
- [16] Minoru Ichimura, Yasushi Sasajima, and Mamoru Imabayashi. 1991. "Grain boundary effect on diffusion of hydrogen in pure aluminum". Mater. Trans. JIM, 32(12): 1109-1114.
- [17] Kirchheim Reiner. 1982. "Solubility, diffusivity and trapping of hydrogen in dilute alloys. deformed and amorphous metals-II”. Acta Metall., 30(6): 1069-1078.
- [18] Kunz Oliver, Wolfgang Wagner. 2012. "The GERG-2008 Wide-Range equation of state for natural gases and other mixtures: An expansion of GERG-2004". J. Chem. Eng. Data, 57(11): 3032-3091.
- [19] Latifi Amin, Reza Miresmaeili, and Amir Abdollah-Zadeh. 2017. "The mutual effects of hydrogen and microstructure on hardness and impact energy of SMA welds in X65 steel". Materials Science and Engineering: A, 679: 87-94.
- [20] Mohammadijoo Mohse, Jonas Valloton, Laurie Collins, Hani Henein, and D. G. Ivey 2018. "Characterization of martensite-austenite constituents and micro-hardness in intercritical reheated and coarse-grained heat affected zones of API X70 HSLA steel". Mater. Charact., 142: 321-331.
- [21] Ohaeri Enyinnaya, Joseph Omale, Rahman K. M. Mostafijur, and Jerzy Szpunar. 2020. "Effect of post-processing annealing treatments on microstructure development and hydrogen embrittlement in API 5L X70 pipeline steel". Mater. Charact., 161: 110124.
- [22] Olden Vigdis, Antonio Alvaro, and Odd M. Akselsen 2012. "Hydrogen diffusion and hydrogen influenced critical stress intensity in an API X70 pipeline steel welded joint - experiments and FE simulations". International Journal of Hydrogen Energy, 37(15): 11474-11486.
- [23] Skjellerudsveen Magnus, Odd M. Akselsen, Olden Vigdis, Johnsen Roy, and Anna Smirnova. 2010. "Effect of microstructure and temperature on hydrogen diffusion in X70 grade pipeline steel and its weldments".
- [24] Techo Robert, R. R. Tickner, and R. E. James. 1965. "An Accurate Equation for the Computation of the Friction Factor for Smooth Pipes From the Reynolds Number". J. Appl. Mech., 32(2): 443-443.
- [25] Uilhoorn Ferdinand. 2017. "Comparison of Bayesian estimation methods for modeling flow transients in gas pipelines". Journal of Natural Gas Science and Engineering, 38: 159-170.
- [26] Wang Rong. 2009. "Effects of hydrogen on the fracture toughness of a X70 pipeline steel". Corros. Sci., 51(12): 2803-2810.
- [27] Wasim Muhammad, Milos B. Djukic, and Tuan Duc Ngo. 2021. "Influence of hydrogen-enhanced plasticity and decohesion mechanisms of hydrogen embrittlement on the fracture resistance of steel". Eng. Fail. Anal., 123: 105312.
- [28] Witek Maciej. 2015. "Possibilities of using X80, X100, X120 high-strength steels for onshore gas transmission pipelines". Journal of Natural Gas Science and Engineering, 27: 374-384.
- [29] Yazdipour Nima, Druce Dunne, and Elena V. Pereloma. 2012. "Effect of grain size on the hydrogen diffusion process in steel using cellular automaton approach". Mater. Sci. Forum, 706-709: 1568-1573.
- [30] Yazdipour Nima, Haq J. Ayesha, Khairul Muzaka, and Elena V. Pereloma. 2012. "2D modelling of the effect of grain size on hydrogen diffusion in X70 steel". Comput. Mater. Sci., 56: 49-57.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc3f4407-569f-4ac0-96a0-67a6e0abe350