PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigations of antithrombogenic properties of passive-carbon layer

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The main purpose of the paper was evaluation of antithrombogenic properties of the passive-carbon layer used for enhancing the surface properties of vascular stents made of Cr-Ni-Mo steel. Design/methodology/approach: In vitro tests of biotolerance evaluation of the passive-carbon layer in blood environment have been carried out on the basis of haemolysis tests (in the direct contact and from the extract) and blood clotting tests. Findings: The carried out investigations have shown that deposition process of the passive-carbon layer which has dielectric properties on the surface of implants made of Cr-Ni-Mo steel and used in interventional cardiology is an effective way in limiting the reactivity of their surface in blood environment and the blood clotting process in consequence. Research limitations/implications: The carried out investigations should be completed with biotolerance in vivo investigations. Originality/value: Modification of physical properties of surface of the metallic biomaterials applied in cardiovascular system by deposition of the passive-carbon layer of dielectric properties limits the blood clotting process.
Rocznik
Strony
197--200
Opis fizyczny
Bibliogr. 31 poz., rys., wykr.
Twórcy
autor
  • Division of Biomedical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Division of Biomedical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • DRG MedTek, ul. Wita Stwosza 24, 02-661 Warszawa, Poland
Bibliografia
  • [1] Z. Paszenda, Forming of physico-chemical properties of coronary stents made of Cr-Ni-Mo steel applied in interventional cardiology. Wydawnictwo Politechniki Śląskiej, Gliwice, 2005, (in Polish).
  • [2] Z. Paszenda, Issues of metal materiale used for implants in interventional cardiology. Engineering of Biomaterials, 21 (2002) 3-9.
  • [3] Z. Paszenda, J. Tyrlik-Held, Corrosion resistance investigations of coronary stents made of Cr-Ni-Mo steel. Proceedings of the 10th International Scientific Conference AMME’ 2001, Gliwice-Zakopane, 2001, 453-460
  • [4] Z. Paszenda Z, J. Tyrlik-Held, Z. Nawrat, J. Zak and K. Wilczek, Corrosion resistance investigations of coronary stents with regard to specificity of coronary vessels system. Engineering of Biomaterials, 34 (2004) 26-33.
  • [5] Z. Paszenda, J. Tyrlik-Held, Z. Nawrat, J. Zak, J. Wilczek, Usefulness of passive-carbon layer for implants applied in interventional cardiology. Journal of Materials Processing Technology, 157-158C (2004) 399-404.
  • [6] Z. Paszenda, J. Tyrlik-Held, W. Chrzanowski, J. Lelatko, Structure investigations of passive-carbon layer on coronary stents of Cr-Ni-Mo steel. Engineering of Biomaterials, 46 (2005) 6-8.
  • [7] P. de Feyter, D. Foley, Coronary stent implantation: a panacea for the interventional cardiologist? European Heart Journal, 21 (2000) 1719-1726.
  • [8] P. de Feyter, The quest for the ideal stent. European Heart Journal, 22 (2001) 1766-1768.
  • [9] W. Walke, Z. Paszenda, J. Filipiak, Experimental and numerical biomechanical analysis of vascular stent. Proceedings of the 13th International Scientific Conference AMME’2005, Wisáa, 2005, 699-702.
  • [10] W. Walke, Z. Paszenda, J. Filipiak, Experimental and numerical biomechanical analysis of vascular stent. Journal of Materials Processing Technology, 164 (2005) 1263-1268.
  • [11] A. Violaris, Y. Ozaki, P. Serruys P, Endovascular stents – a break through technology, future challenges. International Journal of Cardiac Imaging, 13 (1997) 3-13.
  • [12] A.Colombo, G. Stankovic, J. Moses, Selection of coronary stent. Journal of the American College of Cardiology, 6 (2002) 1021-1033.
  • [13] C. Pepine, D. Holmes, P. Block, J. Brinker, D. Mark, Ch. Mullins, S. Nissen et al, Coronary artery stents. Journal of the American College of Cardiology, 283 (1996) 782-794.
  • [14] J. Gunn, D. Cumberland, Stent coatings and local drug delivery. European Heart Journal, 20 (1999) 1693-1700.
  • [15] J. Lahann, D. Klee, H. Thelen, H. Bienert, D. Vorverk, H. Hocker, Improvement of haemocompatibility of metallic stents by polymer coating. Journal of Materials Science: Materials in Medicine, 10 (1999) 443-448.
  • [16] T. Peng, P. Gibula, K. Yao, M. Goosen, Role of polymers in improving the results of stenting in coronary arteries. Biomaterials 17 (1996) 685-694.
  • [17] I. Verweire, E. Schacht, B. Qiang, K. Wang, I. de Scheerder, Evaluation of fluorinated polymers as coronary stent coating. Journal of Materials Science: Materials in Medicine, 11 (2000) 207-212.
  • [18] R. Hoffmann, G. Mintz, Coronary in stent restenosis – predictors, treatment and prevention. European Heart Journal, 21 (2000) 1739-1749.
  • [19] N. Weber, H. Wendel, G. Ziemer, Hemocompatibility of heparin-coated surfaces and the role of selective plasma protein adsorption. Biomaterials, 23 (2002) 429-439.
  • [20] G. Michenatzis, N. Katsala, Y. Missirlis Y, Comparison of haemocompatibility improvement of four polymeric biomaterials by two heparinization techniques. Biomaterials, 24 (2003) 677-688.
  • [21] I. de Scheerder, K. Wang, K. Wilczek, Experimental study of thrombogenicity and foreign body reaction induced by heparin-coated coronary stents. Circulation, 95 (1997) 1549-1553.
  • [22] P. Serruys, B. van Hout, H. Bonnier, V. Legrand, E. Garcia, C. Macaya, E. Sousa, W. van der Giessen, Randomised comparison of implantation of heparin-coated stents with angioplasty in selected patients with coronary artery disease (Benestent II). The Lancet, 352 (1998) 673-681.
  • [23] N. Chronos, C. Markou, J. Kocsis, G. Lianos, S. Hanson, Surface heparinization profoundly decreases acute thrombosis on Crown and Mini-Crown stents in the baboon arteriovenous shunt model. Journal of the American College of Cardiology, 2 (1998) 1163-77.
  • [24] K. Christensen, R. Larsson, H. Emanuelsson, G. Elgue, A. Larsson, Heparin coating of the stent graft – effects on platelets, coagulation and complement activation. Biomaterials, 22 (2001) 349÷355.
  • [25] H. Zhao, J. van Humbeeck, Electrochemical polishing of 316L stainless steel slotted tube coronary stents. Journal of Materials Science: Materials in Medicine, 13 (2002) 911-916.
  • [26] N. Huang, P. Yang, X. Cheng, Y. Leng, X. Zheng. et al, Blood compatibility of amorphous titanium oxide films synthesized by ion beam enhanced deposition. Biomaterials, 19 (1998) 771-776.
  • [27] J. Y. Chen, Y. X. Leng, X. B. Tian, L. P. Wang, N. Huang, P. K. Chu, P. Yang, Antithrombotic investigation of surface energy and optical bandgap and hemocompatibility mechanism of Ti(Ta+5)O2 thin films. Biomaterials, 23 (2002) 2545-2552.
  • [28] N. Huang, P. Yang, Y. Leng, J. Chen, H. Sun, J. Wang J. et al, Hemocompatibility of titanium oxide films. Biomaterials, 24 (2003) 2177-2187.
  • [29] F. Gutmann, H. Keyzer, Modern bioelectrochemistry. Plenum Press, New York 1986.
  • [30] ISO 10993-1997, Biological evaluation of medical devices.
  • [31] ISO 10993-4-1997, Biological evaluation of medical devices – Part 4. Selection of tests for interactions with blood.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc39122c-b891-4454-9e07-3d8b7e01ff7c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.