PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selected Aspects of 3D Printing for Emergency Replacement of Structural Elements

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a synthetic characterization of modern methods of manufacturing or regenerating machine elements. Considered methods are machining and additive methods, in particular 3D printing in the FDM/FFF technique. For the study, the authors made samples of the holder bracket using selected methods. Samples made by machining operations, 3D printing with various filling were tested. The paper contains a technical and economic analysis of the production of a holder bracket using the discussed methods. The dynamics of steel and FDM/FFF printed samples were also assessed by determining their resonance curves. The vibration magnification fac-tors were analyzed - the quotient of the vibration amplitudes in the resonance to the static deformations that occurred under the influence of the constant force and the location of the vibration resonances - the natural frequencies for individual vibration modes. The study's main objective is to assess the possibility of emergency changing the manufacturing technology of selected machine components. The authors were interested in partially replacing costly and not environmentally friendly milling with 3D printing. Machine elements can be manufactured by printing in classical machine building and emergency conditions to replace a damaged component temporarily (e.g., on a ship, for the time of arrival at a port or shipyard). The main assumption guiding the authors during the preparation of this publication was the analysis of the possibility of using the production of "ad hoc" prepared spare parts and their use in the event of a lack of access to parts made of the intended materials.
Twórcy
  • Faculty of Electrical Engineering, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia, Poland
  • Faculty of Maritime Engineering, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia, Poland
  • Mechanical-Electrical Faculty, Polish Naval Academy, ul. Śmidowicza 69, 81-127 Gdynia, Poland
autor
  • Faculty of Electrical Engineering, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia, Poland
  • Faculty of Maritime Engineering, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia, Poland
  • Faculty of Maritime Engineering, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia, Poland
  • Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Feld M. Podstawy projektowania procesów technologicznych typowych części maszyn, 5th ed.; Wydawnictwo Naukowe PWN, 2022.
  • 2. Cichosz P. Nowoczesne procesy obróbki skrawaniem, 1st ed. Wydawnictwo Naukowe PWN, 2022.
  • 3. Raj R., Dixit A.R., Łukaszewski K., Wichniarek, R., Rybarczyk J., Kuczko W., Górski F. Numerical and Experimental Mechanical Analysis of Additively Manufactured Ankle–Foot Orthoses. Materials 2022; 15(17): 6130. https://doi.org/10.3390/ma15176130.
  • 4. Abas M., Habib T., Noor S., Salah B., Zimon D. Parametric Investigation and Optimization to Study the Effect of Process Parameters on the Dimensional Deviation of Fused Deposition Modeling of 3D Printed Parts. Polymers 2022; 14(17): 3667. https://doi.org/10.3390/polym14173667.
  • 5. Silva F.J.G., Sousa V.F.C., Pinto A.G., Ferreira, L.P., Pereira T. Build-Up an Economical Tool for Machining Operations Cost Estimation. Metals 2022; 12(7): 1205.
  • 6. Information on http://www.avia.com.pl.
  • 7. Olszak W. Obróbka skrawaniem, 1st ed.; Wydawnictwo Naukowe PWN, 2022.
  • 8. Grzesik W. Podstawy skrawania materiałów konstrukcyjnych, 3rd ed.; Wydawnictwo Naukowe PWN, 2018.
  • 9. Wierzchowski J. Porównanie nowoczesnych metod wytwarzania części maszyn wraz z weryfikacją rzeczywistych efektów technicznych i ekonomicznych, ich zastosowania w produkcji jednostkowej i małoseryjnej, Engineering Thesis, University of Information Technology and Management in Olsztyn, 2021.
  • 10. Przybylski W., Deja M. Komputerowo wspomagane wytwarzanie maszyn, 3rd ed.; Wydawnictwo Naukowe Techniczne, 2007.
  • 11. Zieliński D. Drukowanie Trwałych Elementów z Tworzyw Termoplastycznych w Technologii FDM/FFF. Tworzywa Sztuczne w Przemyśle 2021, 4, 103–106.
  • 12. Ramya A., Vanapalli S. 3d Printing Technologies In Various Applications. International Journal of Mechanical Engineering and Technology 2016; 7(3): 396–409: 14.
  • 13. Vijay S.A., Shakil M.S., Patil M.P.M. Rapid Manufacturing Process – 3D Printing Technology Advantages, Disadvantages and Applications 2016; 4(11):4.
  • 14. Murawski L. Modelowanie numeryczne konstrukcji i urządzeń okrętowych, wyd. 1, Uniwersytet Morski w Gdyni, 2020.
  • 15. Fico D., Rizzo D., De Carolis V., Montagna F., Esposito Corcione C. Sustainable Polymer Composites Manufacturing through 3D Printing Technologies by Using Recycled Polymer and Filler. Polymers 2022; 14(18): 3756. https://doi.org/10.3390/polym14183756.
  • 16. Gunasekaran K.N., Aravinth V., Muthu Kumaran, C.B., Madhankumar K., Pradeep Kumar S. Investigation of mechanical properties of PLA printed materials under varying infill density. Materials Today: Proceedings 2021; 45: 1849–56.
  • 17. Mercado-Colmenero J.M., Rubio-Paramio M.A., la Rubia-Garcia M.D., Lozano-Arjona D., Martin-Doñate C.A. Numerical and Experimental Study of the Compression Uniaxial Properties of PLA Manufactured with FDM Technology Based on Product Specifications. Int J Adv Manuf Technol 2019; 103(5): 1893–1909. https://doi.org/10.1007/s00170–019–03626–0
  • 18. Chacón J.M., Caminero M.A., García-Plaza E., Núñez P.J. Additive Manufacturing of PLA Structures Using Fused Deposition Modelling: Effect of Process Parameters on Mechanical Properties and Their Optimal Selection. Materials & Design 2017; 124: 143–157. https://doi.org/10.1016/j.mat-des.2017.03.065.
  • 19. Rodríguez J.F., Thomas J.P., Renaud J.E. Mechanical Behavior of Acrylonitrile Butadiene Styrene (ABS) Fused Deposition Materials. Experimental Investigation. Rapid Prototyping Journal 2001; 7(3): 148–158. https://doi.org/10.1108/13552540110395547.
  • 20. Dodziuk H. Druk 3D/AM. Zastosowania oraz skutki społeczne i gospodarcze, 1st ed.; Wydawnictwo Naukowe PWN, 2019.
  • 21. Yao T., Deng Z., Zhang K., Li S. A Method to Predict the Ultimate Tensile Strength of 3D Printing Polylactic Acid (PLA) Materials with Different Printing Orientations. Composites Part B: Engineering 2019; 163: 393–402. https://doi.org/10.1016/j.compositesb.2019.01.025.
  • 22. Veiga F., Bhujangrao T., Suárez A., Aldalur E.,Goenaga I., Gil-Hernandez D. Validation of the Mechanical Behavior of an Aeronautical Fixing Turret Produced by a Design for Additive Manufacturing (DfAM). Polymers 2022; 14: 2177. https://doi.org/10.3390/polym14112177.
  • 23. Kanna S., Ramamoorthy M. Mechanical characterization and experimental modal analysis of 3D Printed ABS, PC and PC-ABS materials. Mater Res Express. 2020; 7(1): 015341.
  • 24. Karimi A., Mole N., Pepelnjak T. Numerical Investigation of the Cycling Loading Behavior of 3D-Printed Poly-Lactic Acid (PLA) Cylindrical Lightweight Samples during Compression Testing. Applied Sciences 2022; 12(16): 8018. https://doi.org/10.3390/app12168018.
  • 25. Ajao K.R., Ibitoye S.E., Adesiji A.D., Akinlabi E.T. Design and Construction of a Low-Cost-High-Accessibility 3D Printing Machine for Producing Plastic Components. Journal of Composites Science 2022; 6(9), 265. https://doi.org/10.3390/jcs6090265
  • 26. Sellami T., Jelassi S., Darcherif A.M., Berriri H., Mimouni M.F. Experimental validation of a numerical 3-D finite model applied to wind turbines design under vibration constraints. Mechanics & Industry 2017; 18(8): 806.
  • 27. Wei X., Behm I., Winkler T., Scharf S., Li X., Bähr R. Experimental Study on Metal Parts under Variable 3D Printing and Sintering Orientations Using Bronze/PLA Hybrid Filament Coupled with Fused Filament Fabrication. Materials 2022; 15(15): 5333.
  • 28. Wang X., Jiang M., Zhou Z., Gou J., Hui D. 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering 2017; 110: 442–58.
  • 29. Górski F., Wichniarek R., Kuczko W., Żukowska, M., Suszek E. Rapid Manufacturing of Individualized Prosthetic Sockets. Advances in Science and Technology Research Journal. 2020; 14(1): 42–49. DOI: 10.12913/22998624/113425.
  • 30. Dizon J.R.C., Espera A.H., Chen Q., Advincula R.C. Mechanical characterization of 3D-printed polymers, Additive Manufacturing, Volume 20, 2018, Pages 44–67, https://doi.org/10.1016/j.ad-dma.2017.12.002.
  • 31. P. Lesage, L. Dembinski, R. Lachat, S. Roth, Mechanical Characterization of 3D Printed Samples under Vibration: Effect of Printing Orientation and Comparison with Subtractive Manufacturing. Results in Engineering 2022, 13, 100372. https://doi.org/10.1016/j.rineng.2022.100372.
  • 32. Z. Osiński, Teoria drgań, 1st ed.; Wydawnictwo Naukowe PWN,1978.
  • 33. T. Uhl, Komputerowo wspomagana identyfikacja modeli konstrukcji mechanicznych, 1st ed.; Wydawnictwo Naukowe Techniczne, 1997.
  • 34. C. van Zijl, K. Soal, R. Volkmar, Y. Govers, M. Böswald, A. Bekker, The use of operational modal analysis and mode tracking for insight into polar vessel operations. Marine Structures. 2021; 79:103043.
  • 35. W.A. Siswanto, M.N. Ibrahim, M.A. Madlan, S.M. Mohamad, Shaker Table Design for Electronic Device Vibration Test System. IJET. 2011;3(6):663–8.
  • 36. Á. Encalada-Dávila, L. Pardo, Y. Vidal, E. Terán, C. Tutivén, Conceptual Design of a Vibration Test System Based on a Wave Generator Channel for Lab-Scale Offshore Wind Turbine Jacket Foundations. JMSE. 2022;10(9):1247.
  • 37. W. Heylen, S. Lammens, P. Sas, Modal Analysis Theory and Testing, 1st Ed.; Katholieke Universiteit Leuven: Oude Markt 13 3000 Leuven, Leuven, 1997.
  • 38. B.T. Phillips, J. Allder, G. Bolan, R.S. Nagle, A. Redington, T. Hellebrekers, J. Borden, N. Pawlenko, S. Licht, Additive Manufacturing Aboard a Moving Vessel at Sea Using Passively Stabilized Stereolithography (SLA) 3D Printing. Additive Manufacturing 2020, 31, 100969. https://doi.org/10.1016/j.addma.2019.100969.
  • 39. L. Virgin, 3D-Printing and Vibration (Including Resonance). The Journal of the Acoustical Society of America 2018, 143 (3), 1817–1817. https://doi.org/10.1121/1.5035963.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc372618-92fa-4967-8755-86bc51b38c36
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.