PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Influence of Heat Treatment and Chemical Composition on the Structure and Mechanical Properties of Thick-walled Ductile Iron Castings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the effects of 75 mm thick cast iron, (casting mould YIV) composition (Cu) and heat treatment were investigated on the microstructure and mechanical properties (hardness, elongation, tensile strength, yield strength) of ductile iron castings. As a result of adding Cu, the amount of pearlite is at 80% reduces of amount of ferrite. Normalizing of non-alloy cast iron increases the amount of pearlite to 70%. It also, increases tensile strength (659 MPa) and hardness (248 HB). Studied metallographic crossections were made from the grip sections of the tensile specimens. The structure composition and the characteristics of graphite were determined by computer image analysis. Measurements of graphite of non-alloy cast iron after normalizing and in cooper cast iron indicate the approximate amount of precipitates of graphite and their approximate average diameters. The applied normalizing and the additive alloy (Cu) were established to give comparable mechanical properties and structure of matrix in thick-walled castings.
Rocznik
Strony
71--76
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
  • Department of Materials Science and Engineering, Mechanical Engineering Faculty, UTP University of Science and Technology, al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
Bibliografia
  • [1] Campbell, J.(2015). Complete Casting Handbook. 2nd Edition. Butterworth-Heinemann.
  • [2] Swain, S.K. & Sen, S. (2011). Study of microstructure of thick wall ductile iron castings. Journal of Metallurgy and Materials Science. 53(2), 133-137.
  • [3] Bockus, S. & Zaldarys, G. (2011). Evaluation of Producing Technique Factors Affecting the Matrix Microstructure of As-Cast Ductile Iron Castings. Metalurgija. 50(1), 9-12.
  • [4] Campbell, J.(2009) A Hypothesis for cast iron microstructures, Metallurgical and Materials Transactions B. 40B, 786-801.
  • [5] Mrvar, P., Petric, M. & Medved, J. (2011). Influence of cooling rate and alloying elements on kinetics of eutectoid transformation in spheroidal graphite cast iron. Key Engineering Materials. 457, 163-168.
  • [6] Lacaze, J., Castro, M. & Esoult, G.L. (1998). Solidification of spheroidal graphite cast iron-II numerical simulation. Acta Materialia. 6, 997-1010.
  • [7] Serrallach, J., Lacaze, J., Sertucha, J. Suarez, R. & Monzon, A. (2011). Effect of selected alloying elements on mechanical properties of pearlitic nodular cast irons, Science and Processing of Cast Iron IX. Key Engineering Materials. 457, 361-366. DOI: 10.4028/www.scientific.net/KEM.457.361.
  • [8] Goodrich, G.M. & Lobenhoger, R.W. (2007). Effect of cooling rate on pearlitic ductile iron mechanical properties. AFS Transactions. 115(05), 07-045.
  • [9] Bockus, S. & Dobrovolskis, A. (2004). Peculiarity of producing ferritic ductile iron castings. Materials Science. (Medziagotyra). 10(1), 3-6.
  • [10] Soiński, M.S. & Derda, A. (2008). The influence of selected elements on mechanical properties of ferritic ductile iron. Archives of Foundry Engineering. 8(3), 149-152.
  • [11] Silman, G.I., Kamynin, V.V. & Goncharov, V.V. (2007). On the mechanisms of copper effect on structure formation in cast iron. Metal Science and Heat Treatment. 49(7-8), 387-393. https://doi.org/10.1007/s11041-007-0072-z.
  • [12] Gonzaga, R.A. & Carrasquilla, J.F. (2005). Influence of an appropriate balance of the alloying elements on iron. Journal of Materials Processing Technology. 162-163, 293-297.
  • [13] Stawarz, M. (2017). SiMo Ductile Iron Crystallization Process. Archives of Foundry Engineering. 17(1), 147-152. DOI:10.1515/afe-2017-0027.
  • [14] Pirowski, Z., Wodnicki, J., Olszyński, J., Gościański, M. & Dudziak, B. (2012). Effect of boron additive on hardenability changes of ductile iron with isothermal transformation for the thick-walled castings. Journal of Research and Applications in Agricultural Engineering. 57(2), 153-155.
  • [15] Chinakhov, D.A. (2014). Structure and mechanical properties of Cu-alloyed cast iron. Applied Mechanics and Materials. 682, 178-182.
  • [16] Stawarz, M. (2013). Influence of technological parameters on the microstructure of the silicon cast iron, In Metal 2013: 22nd International Conference on Metallurgy and Materials, Ostrava. TANGER 2013, pp. 92-96.
  • [17] Xue-Zheng, W., Xiaro-Rui, S., Ying, Z. (2012). Study on productive technology of greensand mold and thick-walled small piece for nodular cast iron. Advanced Materials Research. 490-495, 3545-3548. https://doi.org/10.4028/ www.scientific.net/AMR.490-495.3545.
  • [18] Fraś, E., Górny, M. & Lopez, H.F. (2007). Graphite nodule and cell count in cast iron. Archives of Foundry Engineering. 7(3), 47-52.
  • [19] Zhe, L., Weiping, Ch. & Yu, D. (2012). Influence of cooling rate and antimony addition content on graphite morphology and mechanical properties of a ductile iron. China Foundry. 9(2), 114-118.
  • [20] Falat, L., Čiripová, L., Kepič, J., Buršík, J. & Podstranská, I. (2014). Correlation between microstructure and creep performance of artensitic/austenitic transition weldment in dependence of its post-weld heat treatment. Engineering Failure Analysis. 40, 141-152.
  • [21] Falat, L., Kepič, J., Čiripová, L., Ševc, P., & Dlouhý, I. (2016). The effects of postweld heat treatment and isothermal aging on T92 steel heat-affected zone mechanical properties of T92/TP316H dissimilar weldments. Journal of Materials Research. 31, 1532-1543.
  • [22] Karsay, S.I. (1992). Gusseisen mit Kugelgraphit I., QIT-FERET TITANE INC.
  • [23] Nakae, H., Jung, S. & Shin, H.C. (2008). Formation mechanism of chunky graphite and its preventive measure. Journal of Materials Science & Technology. 24, 289-295.
  • [24] Girshovich, N.G. (1966). Crystallisation and properties of cast iron in castings. (Kristalizacja i swojstwa czuguna w otliwkach). Maszinostrojenie, Moskwa-Leningrad, 562.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc313aed-deba-40d7-9e02-580e1bc4eb70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.