PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Influence of the plate dimensions of a fillet weld joint on angular deformation and residual stresses

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
T-joints are essential structural components in applications such as shipbuilding, where optimised designs are crucial for ensuring load transmission and structural stability. This type of joint exhibits imperfections due to non-uniform heating and cooling behaviour during welding. This study analyses the influence of plate dimensions on the deformations and residual stresses induced by welding on the fillet weld joints. A literature review is conducted to understand the relationship between plate dimensions, angular deformation, and residual stresses, and is followed by a validation study to confirm the simulation methodology. Following this, different models with varying flange widths, plate thicknesses, and web heights are developed using the commercial software MSC PATRAN, and simulations are carried out with the commercial software SIMUFACT WELDING to model the process of gas metal arc welding, using the finite element method. The results confirm the influence of the plate dimensions, revealing that specimens with lower web heights exhibit increased deformation of 15% compared to the average. It is also found that whether the relationship is squared between the web height and flange width, less angular deformation on the flange will occur. For the plate dimensions and welding conditions considered here, it is found that a thicker flange plate (9 mm) produces greater welding angular deformations than a thinner one (6 mm). This is because depending on the heat input, thinner plates may exhibit less angular deformation than thicker ones when the same amount of heat is applied.
Rocznik
Tom
Strony
124--131
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Specialized Superior Technical Institute, Panama City
  • National Research System (SNI), SENACYT, Panama City
  • 4 Educational Research and Innovation Center, Science and Technology (CiiECYT), Panama City, Panama
  • School of Mechanical Engineering, Technological University of Panama, Panama City, Panama
Bibliografia
  • 1. A. A., Z. B. H. M. y Bhatti IB, Barsoum Z, Murakawa H, Barsoum I. Influence of thermo-mechanical material properties of different steel. Mater Des 2015, vol. 65, pp. 878-889.
  • 2. Fu G, Lourenco M, Duan M, Estefen S. Effect of boundary conditions on residual stress and distortion in T-joint welds. J Constr Steel Res 2014, vol. 102, pp. 121-135.
  • 3. Paulo RMF, Teixeira-Dias F, Valente RAF. Numerical simulation of aluminium stiffened panels subjected to axial compression: Sensitivity analyses to initial geometrical imperfections and material properties. Thin-Walled Structures 2013 vol. 62, pp. 65-74.
  • 4. Wei L, Deng D. Influences of heat input, welding sequence and external restraint on twisting distortion in an asymmetrical curved stiffened panel. Advances in Engineering Software 2018, vol. 115, pp. 439-451.
  • 5. Liang W, Hu X, Zheng Y, Deng D. Determining inherent deformations of HSLA steel T-joint under structural constraint by means of thermal elastic plastic FEM. Thin-Walled Structures 2020, vol. 147, p. 106568.
  • 6. Urbański T, Banaszek A, Jurczak W. Prediction of welding-induced distortion of fixed plate edge using design of experiment approach. Polish Maritime Research 2020, vol. 27, no. 1, pp. 134-142. https://doi.org/10.2478/pomr-2020-0014.
  • 7. Chandramohan DL, Roy K, Taheri H, Karpenko M, Fang Z, Lim JBP. A state of the art review of fillet welded joints. Dec. 01, 2022, MDPI. doi: 10.3390/ma15248743.
  • 8. Zhao MS, Lee CK, Fung TC, Chiew SP. Impact of welding on the strength of high performance steel T-stub joints. J Constr Steel Res 2017, vol. 131, pp. 110-121.
  • 9. De Meester B. The weldability of modern structural TMCP steels. ISIJ International 1997, vol. 37, pp. 537-551.
  • 10. Ka Jssab R, Champliaud H, Thomas M, Le V, Lanteigne. Experimental and finite element analysis of a t-joint welding. Journal of Mechanics Engineering and Automation 2012, vol. 2, pp. 411-421.
  • 11. Fu G, Lourenco M, Duan M, Estefen S. Influence of the welding sequence on residual stress and distortion of fillet welded structures. Marine Structures 2016, vol. 46, pp. 30-55.
  • 12. Li Z, Feng G, Deng D, Luo Y. Investigating welding distortion of thin-plate stiffened panel steel structures by means of thermal elastic plastic finite element method. J Mater Eng Perform 2021, vol. 30, pp. 3677-3690.
  • 13. Martínez Y, Collazo R. Review of the effects of welding parameters on residual stresses of the process. Engineering Research Report 2018, vol. 16, pp. 85-98.
  • 14. Kozak J. Prediction of weld deformations by numerical methods—Review. Mar. 01, 2022, Sciendo. https://doi.org/10.2478/pomr-2022-0010.
  • 15. Di Bella G, Chairi M, Denaro A, Bado A. Effect of Surface treatment on tensile strength of steel single lap joints bonded with double-sided acrylic foam tapes for naval applications. Metals (Basel) 2024, vol. 14, p. 1071.
  • 16. Borsellino C, Favaloro F, Guido DB. Durability of single lap friction stir welded joints between S355-J0 steel and AA5083 aluminum alloy—Mechanical tests. Metals (Basel) 2024, vol. 14, no. 2, p. 137.
  • 17. Marquis G, Barsoum Z. A guideline for fatigue strength improvement of high strength steel welded structures using high frequency mechanical impact treatment. Procedia Eng 2013, vol. 66, pp. 98–107.
  • 18. Deng D, Liang W, Murakawa H. Determination of welding deformation in fillet-welded joint by means of numerical simulation and comparison with experimental measurements. Journal of Materials Processing Technology 2007, vol. 183, pp. 219-225.
  • 19. Reference Manual. PATRAN. 2023, M. Software: 4. 20. Reference Manual. SIMUFACT WELDING. 2024, M. Software: 1.
  • 21. Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources. Metallurgical Transactions B 1984, vol. 15, pp. 299-305.
  • 22. Ruiz H, Osawa N, Rashed S. Study on the stability of compressive residual stress induced by high-frequency mechanical impact under cyclic loadings with spike loads. Welding in the World 2020, vol. 64, no. 11, pp. 1855-1865. https://doi.org/10.1007/s40194-020-00965-5.
  • 23. Michelaris P. Minimization of welding distortion and buckling, 1st ed., vol. 1. Woodhead Publishing Limited; 2011.
  • 24. Satoh K, Terasaki T. Effect of welding conditions on residua stresses distributions and welding deformation in welded structures materials. Quarterly Journal of Japan Welding Society 1976, vol. 45, pp. 150-156.
  • 25. Anami K, Miki C, Tani H, Yamamoto H. Improving fatigue strength of welded joints by hammer peening and TIGdressing. JOUR 2000, vol. 17, pp. 67–78.
  • 26. Marquis G, Mikkola E, Yildirim HC, Barsoum Z. Fatigue strength improvement of steel structures by high-frequency mechanical impact: Proposed fatigue assessment guidelines. Welding in the World 2013, vol. 57, pp. 803-822.
  • 27. Yildirim HC, Marquis G. Fatigue strength improvement factors for high strength steel welded joints treated by high frequency mechanical impact. International Journal of Fatigue 2012, vol. 44, pp. 168-176.
  • 28. Tai M, Miki C. Fatigue strength improvement by hammer peening treatment—Verification from plastic deformation, residual stress, and fatigue crack propagation rate. Welding in the World 2014, vol. 58, pp. 307-318.
  • 29. Yildirim HC, Marquis G, Barsoum Z. Fatigue assessment of high frequency mechanical impact (HFMI)-improved fillet welds by local approaches. Int J Fatigue 2013, vol. 52, pp. 57-67.
  • 30. Tsai C, Tsai M, McCauley RB. Stress analysis and design of double fillet-welded T-joints. Welding Research Supplement, pp. 94–102, 1998.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc312a87-e365-46f0-9869-2f2f9a81b1e7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.