PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detection of Arrhythmia from ECG Signals by a Robust Approach to Outliers

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Detekcja arytmii na podstawie sygnału ECG przy wykorzystaniu sieci neuronowych
Języki publikacji
EN
Abstrakty
EN
The study focuses on arrhythmia detection from ECG signals, and for this aim it uses Fuzzy C-means (FCM) and Single Neuron Perceptron (SNP). FCM clustering adapted to time-series transforms ECG signals into useful features, and then SNP classifies them. We use MITBIH Arrhythmia database. The database is utilized for two experiments in the study. In the first experiment, RR intervals trimmed from the database are prepared for training the model, and in the second one ECG segments are used for real time simulation. Obtained results are compared with some other studies. According to the results, the proposed approach is good at arrhythmia detection as well as at least the studies in the literature. Lastly we interpret the results and present some studies for the future.
PL
W artykule skoncentrowano się na detekcji arytmii na podstawie sygnału ECG przy wykorzystaniu pojedynczego perceptronu i algorytmu FCM. Do badań wykorzystano bazę danych MIT-BIH Arrhythmia. W artykule oceniono zastosowaną metodę, przedstawiono interpretację wyników i dalsze propozycje.
Rocznik
Strony
81--85
Opis fizyczny
Bibliogr. 21 poz., tab., wykr.
Twórcy
autor
  • Cukurova University
Bibliografia
  • [1] M. R. Homaeinezhad, S. A. Atyabi, E. Tavakkoli, H. N. Toosi, A. Ghaffari, R. Ebrahimpour, ECG arrhythmia recognition via a neuro-SVM–KNN hybrid classifier with virtual QRS imagebased geometrical features, Expert Systems with Applications, 39 (2012) 2047–2058.
  • [2] C. P. Shen, W.C. Kao, Y. Y. Yang, M. C. Hsu, Y. T. Wuc, F. Lai, Detection of cardiac arrhythmia in electrocardiograms using adaptive feature extraction and modified support vector machines, Expert Systems with Applications, 39 (2012) 7845– 7852.
  • [3] A. Mousa, R. Saleem, Using Reduced Interference Distribution to Analyze Abnormal Cardiac Signal, Journal of Electrical Engineering, 62(3) (2011) 168–172.
  • [4] C. H. Lin, Y. C. Du, T. Chen, Adaptive wavelet network for multiple cardiac arrhythmias recognition, Expert Systems with Applications, 34 (2008) 2601–2611.
  • [5] J. C. Wood, D. T. Barry, Time-frequency analysis of skeletal muscle and cardiac vibrations, Proceedings of the IEE, 84 (9) (1996), 1281–1294.
  • [6] C. H. Lin, Frequency-domain features for ECG beat discrimination using grey relational analysis-based classifier, Computers and Mathematics with Applications, 55 (2008) 680– 690.
  • [7] S. Kar, M. Okandan, Atrial fibrillation classification with artificial neural networks. Pattern Recognition, 40 (2007) 2967-2973.
  • [8] I. Christov, G. Gomez-Herrero, V. Krasteva, I. Jekova, A. Gotchev, K. Egiazarian, Comparative study of morphological and time-frequency ECG descriptors for heartbeat classification, Medical Engineering and Physics, 28 (2006) 876–887.
  • [9] M. Stridh, L. Sörnmo, C. J. Meurling, S. B. Olsson, Sequential characterization of atrial tachyarrhythmias based on ECG timefrequency analysis, IEEE Transactions on Biomedical Engineering, 51 (1) (2004).
  • [10] D. Benitez, P. A. Gaydecki, A. Zaidi, A. P. Fitzpatrick, The use of the Hilbert transform in ECG signal analysis, Computers in Biology and Medicine, 31 (2001) 399–406.
  • [11] R. H. Clayton, A. Murray, Estimation of the ECG signal spectrum during ventricular fibrillation using the fast Fourier transform and maximum entropy methods, Proceedings of the Computers in Cardiology, (1993) 867–870.
  • [12] M. Engin, ECG beat classification using neuro-fuzzy network, Pattern Recognition Letters 25 (2004) 1715–1722.
  • [13] M. Llamedo, A. Khawaja, J. P. Martinez, Cross-Database Evaluation of a Multilead Heartbeat Classifier, IEEE Transactions on Information Technology in Biomedicine, 16 (4) (2012) 658-664.
  • [14] F. Yaghouby, A. Ayatollahi, R. Bahramali, M. Yaghouby, Robust genetic programming-based detection of atrial fibrillation using RR intervals, Expert Systems, 29 (2) (2012) 183-199.
  • [15] L. Hong-wei, S. Ying, L. Min, L. Pi-ding, Z. Zheng, A probability density function method for detecting atrial fibrillation using R– R intervals, Medical Engineering & Physics, 31 (2009) 116– 123.
  • [16] M. G. Tsipouras, D. I. Fotiadis, Automatic arrhythmia detection based on time and time-frequency analysis of heart rate variability, Computer Methods and Programs in Biomedicine, 74 (2004), 95-108.
  • [17] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C. K. Peng, H. E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals, Circulation, 101 (23) (2000) e215–e220.
  • [18] J. C. Bezdek, R. Ehrlich, W. Full, FCM: The Fuzzy C-means Clustering Algorithm, Computers & Geosciences, 10 (2- 3)(1984) 191-203.
  • [19] F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in the brain, Psychological Review, 65 (1958) 386–408.
  • [20] S. Osowski, T. H. Linh, ECG beat recognition using fuzzy hybrid neural network, IEEE Transactions on Biomedical Engineering, 48 (2001) 1265–1271.
  • [21] Z. Dokur, T. Olmez, ECG beat classification by a hybrid neural network, Computer Methods and Programs in Biomedicine, 66 (2001) 167–181.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc2f4bbf-2671-4877-8fa8-2a09a649bc37
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.